首页|期刊导航|计算机工程与应用|大语言模型构建鼻炎医案知识图谱的应用研究

大语言模型构建鼻炎医案知识图谱的应用研究OA北大核心

Study on Application of Large Language Model in Constructing Knowledge Graph of Medical Cases of Rhinitis

中文摘要英文摘要

将大语言模型用于医案的自动化知识抽取,构建国医大师干祖望治疗鼻炎知识图谱,为中医药领域的智能化发展提供新思路和方法.采用干祖望教授的临床医案数据作为基础样本,使用OWL(Web ontology language)构建本体模型,确定抽取对象与关系,再采用示范案例与关系列表结合的提示模板,引导大语言模型对医案数据进行自动化抽取实验,并使用Nebula Graph进行知识图谱的存储和可视化展示.与传统的知识抽取模型Bert-BiLSTM-CRF相比,ChatGPT4模型在综合指标上表现最佳,F1值达到82.75%,为快速处理非结构化医案数据提供了有效的解决方案,并实现了半自动化构建中医药领域知识图谱.利用大语言模型进行知识图谱构建,不仅为中医药领域的智能化提供了切实可行的方案,也为名老中医的诊疗经验传承和中医药知识图谱的快速构建贡献了新的研究思路,推动了中医药事业的发展.

An automated knowledge extraction method based on large language model is explored,aiming to construct a knowledge graph on the treatment of rhinitis by national medical master Gan Zuwang,and to provide innovative ideas and methods for the intelligent advancement in the field of traditional Chinese medicine.The clinical medical case data of pro-fessor Gan Zuwang are used as the base sample,and the ontology model is constructed using OWL(Web ontology lan-guage)to determine the extraction objects and relations,and then the prompt template combining the demonstration case and the relation list is used to guide the automated extraction experiments of the medical case data with the large language model,and the Nebula Graph is used for the storage and the visual display of the knowledge graph.Compared with the tra-ditional knowledge extraction model Bert-BiLSTM-CRF,the ChatGPT4 model performs the best in terms of comprehen-sive indexes,with an F1 value of 82.75%,which provides an effective solution for the rapid processing of unstructured medical case data and achieves semi-automatic construction of knowledge graph in the field of Chinese medicine.The use of large language models for knowledge graph construction not only provides a practical solution for the intelligence in the field of Chinese medicine,but also contributes new research ideas for the inheritance of diagnostic and treatment expe-rience of famous and veteran Chinese medicine practitioners and the rapid construction of the knowledge graph of Chinese medicine,which promotes the development of Chinese medicine.

李玥;洪海蓝;李文林;杨涛

南京中医药大学 人工智能与信息技术学院,南京 210023南京中医药大学 网络安全与信息化办公室,南京 210023南京中医药大学 人工智能与信息技术学院,南京 210023||江苏省中医外用药开发与应用工程研究中心,南京 210023南京中医药大学 人工智能与信息技术学院,南京 210023

中医学

国医大师干祖望大语言模型Nebula Graph

national medical masterGan Zuwanglarge language modelNebula Graph

《计算机工程与应用》 2025 (4)

167-175,9

江苏省中医药管理局2021年度江苏省中医药科技发展计划(ZT202101).

10.3778/j.issn.1002-8331.2403-0379

评论