| 注册
首页|期刊导航|工矿自动化|基于改进YOLOv8n的井下人员多目标检测

基于改进YOLOv8n的井下人员多目标检测

问永忠 贾澎涛 夏敏高 张龙刚 王伟峰

工矿自动化2025,Vol.51Issue(1):31-37,77,8.
工矿自动化2025,Vol.51Issue(1):31-37,77,8.DOI:10.13272/j.issn.1671-251x.2024110035

基于改进YOLOv8n的井下人员多目标检测

Multi-target detection of underground personnel based on an improved YOLOv8n model

问永忠 1贾澎涛 2夏敏高 2张龙刚 1王伟峰3

作者信息

  • 1. 陕西陕煤蒲白矿业有限公司,陕西渭南 715517
  • 2. 西安科技大学计算机科学与技术学院,陕西西安 710054
  • 3. 西安科技大学安全科学与工程学院,陕西西安 710054
  • 折叠

摘要

Abstract

This study aims to address the complex challenges in monitoring underground personnel in hazardous areas,including uneven lighting,target scale inconsistency,and occlusion.An innovative multi-target detection algorithm,YOLOv8n-MSMLAS,was proposed based on the YOLOv8n network structure.The algorithm modified the Neck layer by incorporating a Multi-Scale Spatially Enhanced Attention Mechanism(MultiSEAM)to enhance the detection of occluded targets.Furthermore,a Hybrid Local Channel Attention(MLCA)mechanism was introduced into the C2f module to create the C2f-MLCA module,which fused local and global feature information,thereby improving feature representation.An Adaptive Spatial Feature Fusion(ASFF)module was embedded in the Head layer to boost detection performance for small-scale targets.Experimental results demonstrated that YOLOv8n-ASAM outperformed mainstream models such as Faster R-CNN,SSD,RT-DETR,YOLOv5s,and YOLOv7 in terms of overall performance,achieving mAP@0.5 and mAP@0.5∶0.95 of 93.4%and 60.1%,respectively,with a speed of 80.0 frames per second,the parameter is 5.80× 106,effectively balancing accuracy and complexity.Moreover,YOLOv8n-ASAM exhibited superior performance under uneven lighting,target scale inconsistency,and occlusion,making it well-suited for real-world applications.

关键词

煤矿井下危险区域/井下人员多目标检测/YOLOv8n/多尺度空间增强注意力机制/自适应空间特征融合/轻量化混合局部通道注意力机制

Key words

underground hazardous areas in coal mines/multi-target detection of underground personnel/YOLOv8n/multi-scale spatially enhanced attention mechanism/adaptive spatial feature fusion/lightweight hybrid local channel attention mechanism

分类

矿业与冶金

引用本文复制引用

问永忠,贾澎涛,夏敏高,张龙刚,王伟峰..基于改进YOLOv8n的井下人员多目标检测[J].工矿自动化,2025,51(1):31-37,77,8.

基金项目

陕西省重点研发计划(2022QCY-LL-70) (2022QCY-LL-70)

陕西省秦创原"科学家+工程师"队伍建设项目(2023KXJ-052). (2023KXJ-052)

工矿自动化

OA北大核心

1671-251X

访问量6
|
下载量0
段落导航相关论文