首页|期刊导航|农业机械学报|基于电子病历多模态数据的作物病害多元场景处方推荐方法研究

基于电子病历多模态数据的作物病害多元场景处方推荐方法研究OA北大核心

Multi-scenario Prescription Recommendations for Crop Diseases Based on Multi-modal Data of Electronic Medical Records

中文摘要英文摘要

针对作物品种及病害种类繁杂、样本数据严重不平衡、处方类别多样及数据多模态等特点和难点,本文基于电子病历多模态数据整合,开展面向多样化、可拓展和多模态3种应用场景需求的作物病害处方推荐方法研究.针对常见病害多样化处方推荐应用场景,基于CdsBERT-RCNN和诊断推理构建了作物病害多样化处方推荐模型,提升了面向32种常见病害的诊断准确度及处方推荐的多样化水平;针对未训练少见病害和新添处方应用场景,基于MC-SEM和语义检索构建了作物病害可拓展处方推荐模型,提升了语义匹配准确性和案例库检索速度,实现对未训练病害的处方推荐功能;针对多种模态信息采集和输入应用场景,基于BATNet多层特征融合构建了多模态作物病害处方推荐模型,提升了多模态数据输入的处方推荐性能.实验结果表明,CdsBERT-RCNN模型对32种常见病害的诊断准确率达到85.65%,F1值达到85.63%;不同完整性输入测试中,仅输入症状信息即可达到81.19%的准确率,而添加环境信息和作物信息分别使准确率进一步提高1.65、3.61个百分点;MC-SEM模型对电子病历语义匹配任务达到皮尔森相关系数86.34%和斯皮尔曼相关系数77.67%;封闭集和开放集上处方推荐准确率分别达到88.20%和82.04%,验证了模型对未训练病害的推荐能力;BATNet对于多模态输入处方推荐任务的准确率和F1值达到98.88%和98.83%;应用场景分析和测试验证了模型在不完整模态(纯文本或纯图像)和不完整信息输入(作物、环境、症状)情况下泛化能力.该研究为数字化赋能作物病害防治决策提供了新的思路.

Considering challenges such as diverse crop varieties,complex disease types,significant sample data imbalance,varied prescription categories,and multi-modal data,prescription recommendation methods tailored to diverse,extensible,and multi-modal application scenarios were explored by using multi-modal EMR data.To accommodate the varying prescription preferences of agricultural producers,a diversified crop disease prescription recommendation model based on CdsBERT-RCNN and diagnostic reasoning was developed,improving diagnostic accuracy and prescription diversity for 32 common diseases.For untrained rare diseases and newly added prescriptions,an extensible crop disease prescription recommendation model based on MC-SEM and semantic retrieval was developed,enhancing semantic matching accuracy and case library retrieval speed,and providing prescription recommendations for untrained diseases.For multimodal information collection and input,a multi-modal crop disease prescription recommendation model based on BATNet multi-layer feature fusion was developed,enhancing prescription recommendation performance for multimodal data inputs.Results demonstrated that CdsBERT-RCNN achieved an 85.65%diagnostic accuracy and an Fl score of 85.63%across the 32 common diseases.In tests with varying input completeness levels,the model achieved 81.19%accuracy with symptom information alone,and the inclusion of environmental and crop information improved accuracy by 1.65 percentage points and 3.61 percentage points,respectively.MC-SEM achieved a Pearson correlation coefficient of 86.34%and a Spearman correlation coefficient of 77.67%for EMR semantic matching tasks;and achieved accuracy of 88.20%and 82.04%in the closed-set and open-set prescription recommendation tests,respectively,demonstrating its capability to expand to untrained diseases.BATNet achieved an accuracy and Fl score of 98.88%and 98.83%,respectively,for multi-modal input prescription recommendation tasks.Application scenario analysis and testing validated the model's generalization capability for incomplete modalities(pure text or pure image)and incomplete information input(crop,environment,symptoms).The research result would provide an idea for digitally enabled crop disease control decision-making.

张领先;丁俊琦;陈菲菲;李宜滨;张一丁

中国农业大学信息与电气工程学院,北京 100083中国农业大学信息与电气工程学院,北京 100083中国农业大学信息与电气工程学院,北京 100083中国农业大学信息与电气工程学院,北京 100083中国农业大学工学院,北京 100083

计算机与自动化

作物病害处方推荐自然语言处理语义检索多模态融合电子病历

prescription recommendation for crop diseasesnatural language processingsemantic retrievalmulti-modal fusionelectronic medical records

《农业机械学报》 2025 (1)

25-36,46,13

国家自然科学基金项目(62376272)和全国农业专业学位研究生教育指导委员会研究生教育研究重点课题(2021-NYZD-07)

10.6041/j.issn.1000-1298.2025.01.003

评论