首页|期刊导航|农业机械学报|基于RGB与深度图像融合的生菜表型特征估算方法

基于RGB与深度图像融合的生菜表型特征估算方法OA北大核心

Lettuce Phenotype Estimation Using Integrated RGB-Depth Image Synergy

中文摘要英文摘要

采用自动化手段对植物生长过程中的表型特征进行精准测量对于育种和栽培等应用具有重要意义.本文围绕工厂化生菜种植中的表型特征无损精准检测需求,通过融合深度相机采集的RGB图像和深度图像,利用改进的DeepLabv3+模型进行图像分割,并通过双模态冋归网络对生菜表型特征进行估算.本文改进的分割模型的骨干网络由Xception替换为MobileViTv2,以增强其全局感知能力和性能;在回归网络中,提出了卷积双模态特征融合模块CMMCM,用于估算生菜的表型特征.在包含4个生菜品种的公开数据集上的实验结果表明,本文方法可对鲜质量、干质量、冠幅、叶面积和株高共5种生菜表型特征进行估算,决定系数分别达到0.922 2、0.931 4、0.862 0、0.935 9和0.887 5.相较于未添加CMMCM和SE模块的RGB和深度图的表型参数估计基准ResNet-10(双模态),本文改进的模型决定系数分别提高2.54%、2.54%、1.48%、2.99%和4.88%,单幅图像检测耗时为44.8 ms,说明该方法对于双模态图像融合的生菜表型特征无损提取具有较高的准确性和实时性.

Accurate measurement of phenotypic traits in plant growth using automated methods is crucial for applications such as breeding and cultivation.Aiming to address the need for non-destructive,precise detection of phenotypic traits in factory-grown lettuce,by integrating RGB images and depth images collected by depth cameras,an improved DeepLabv3+model was used for image segmentation,and a dual-modal regression network estimated the phenotypic traits of lettuce.The backbone of the improved segmentation model was replaced from Xception to MobileViTv2 to enhance its global perception capabilities and performance.In the regression network,a convolutional multi-modal feature fusion module(CMMCM)was proposed to estimate the phenotypic traits of lettuce.Experimental results on a public dataset containing four lettuce varieties showed that the method estimated five phenotypic traits—fresh weight,dry weight,canopy diameter,leaf area,and plant height—with determination coefficients of 0.922 2,0.931 4,0.862 0,0.935 9,and 0.887 5,respectively.Compared with the RGB and depth image-based phenotypic parameter estimation benchmark ResNet-10(Dual)without CMMCM and SE modules,the improved model increased the determination coefficients by 2.54%,2.54%,1.48%,2.99%,and 4.88%,respectively,with an image detection time of 44.8 ms per image.This demonstrated that the method achieved high accuracy and real-time performance for non-destructive detection of lettuce phenotypic traits through dual-modal image fusion.

陆声链;李沂杨;李帼;贾小泽;鞠青青;钱婷婷

广西师范大学计算机科学与工程学院,桂林 541004||广西多源信息挖掘与安全重点实验室,桂林 541004广西师范大学计算机科学与工程学院,桂林 541004||广西多源信息挖掘与安全重点实验室,桂林 541004广西师范大学计算机科学与工程学院,桂林 541004||广西多源信息挖掘与安全重点实验室,桂林 541004广西师范大学计算机科学与工程学院,桂林 541004||广西多源信息挖掘与安全重点实验室,桂林 541004上海市农业科学院农业科技信息研究所,上海 201403||上海数字农业工程技术研究中心,上海 201403上海市农业科学院农业科技信息研究所,上海 201403||上海数字农业工程技术研究中心,上海 201403

计算机与自动化

生菜表型估算模态融合分割模型RGB图像深度图像

lettucephenotypic estimationmodality fusionsegmentation modelRGB imagesdepth images

《农业机械学报》 2025 (1)

84-91,101,9

国家自然科学基金项目(61762013)、上海市农业科技创新项目(2023-02-08-00-12-F04621)和农业农村部长三角智慧农业技术重点实验室开放课题(KSAT-YRD2023011)

10.6041/j.issn.1000-1298.2025.01.009

评论