| 注册
首页|期刊导航|农业机械学报|基于RGB与深度图像融合的生菜表型特征估算方法

基于RGB与深度图像融合的生菜表型特征估算方法

陆声链 李沂杨 李帼 贾小泽 鞠青青 钱婷婷

农业机械学报2025,Vol.56Issue(1):84-91,101,9.
农业机械学报2025,Vol.56Issue(1):84-91,101,9.DOI:10.6041/j.issn.1000-1298.2025.01.009

基于RGB与深度图像融合的生菜表型特征估算方法

Lettuce Phenotype Estimation Using Integrated RGB-Depth Image Synergy

陆声链 1李沂杨 1李帼 1贾小泽 1鞠青青 2钱婷婷2

作者信息

  • 1. 广西师范大学计算机科学与工程学院,桂林 541004||广西多源信息挖掘与安全重点实验室,桂林 541004
  • 2. 上海市农业科学院农业科技信息研究所,上海 201403||上海数字农业工程技术研究中心,上海 201403
  • 折叠

摘要

Abstract

Accurate measurement of phenotypic traits in plant growth using automated methods is crucial for applications such as breeding and cultivation.Aiming to address the need for non-destructive,precise detection of phenotypic traits in factory-grown lettuce,by integrating RGB images and depth images collected by depth cameras,an improved DeepLabv3+model was used for image segmentation,and a dual-modal regression network estimated the phenotypic traits of lettuce.The backbone of the improved segmentation model was replaced from Xception to MobileViTv2 to enhance its global perception capabilities and performance.In the regression network,a convolutional multi-modal feature fusion module(CMMCM)was proposed to estimate the phenotypic traits of lettuce.Experimental results on a public dataset containing four lettuce varieties showed that the method estimated five phenotypic traits—fresh weight,dry weight,canopy diameter,leaf area,and plant height—with determination coefficients of 0.922 2,0.931 4,0.862 0,0.935 9,and 0.887 5,respectively.Compared with the RGB and depth image-based phenotypic parameter estimation benchmark ResNet-10(Dual)without CMMCM and SE modules,the improved model increased the determination coefficients by 2.54%,2.54%,1.48%,2.99%,and 4.88%,respectively,with an image detection time of 44.8 ms per image.This demonstrated that the method achieved high accuracy and real-time performance for non-destructive detection of lettuce phenotypic traits through dual-modal image fusion.

关键词

生菜/表型估算/模态融合/分割模型/RGB图像/深度图像

Key words

lettuce/phenotypic estimation/modality fusion/segmentation model/RGB images/depth images

分类

计算机与自动化

引用本文复制引用

陆声链,李沂杨,李帼,贾小泽,鞠青青,钱婷婷..基于RGB与深度图像融合的生菜表型特征估算方法[J].农业机械学报,2025,56(1):84-91,101,9.

基金项目

国家自然科学基金项目(61762013)、上海市农业科技创新项目(2023-02-08-00-12-F04621)和农业农村部长三角智慧农业技术重点实验室开放课题(KSAT-YRD2023011) (61762013)

农业机械学报

OA北大核心

1000-1298

访问量0
|
下载量0
段落导航相关论文