首页|期刊导航|农业机械学报|基于多模态信息融合的皮蛋溏心沙心分类方法

基于多模态信息融合的皮蛋溏心沙心分类方法OA北大核心

Classification Methods for Soft-yolk and Hard-yolk Preserved Eggs Based on Multimodal Information Fusion

中文摘要英文摘要

溏心皮蛋与沙心皮蛋有着各自的口感和味道,均有各自受众,目前只能根据腌制时间来判断是溏心皮蛋还是沙心皮蛋,而这种方法不仅需要丰富的经验且误判比例较高.为了解决这一问题,本文设计了皮蛋红外图像和可见/近红外光谱采集装置,以及配套的溏心皮蛋和沙心皮蛋的分类模型.根据采集到的红外图像数据,在ResNetl8网络添加MLCA(Mixed local channel attention)模块,得到的改进模型ResNet_MLCA实现了溏心皮蛋和沙心皮蛋的分类,准确率为95.0%.根据采集到的可见/近红外光谱数据,基于一维卷积设计了一维残差模块用于可见/近红外光谱数据的特征提取和分类,其对溏心皮蛋和沙心皮蛋分类准确率也达到95.0%.为了进一步提高模型检测准确率,将ResNet_MLCA模型所提取的红外图像特征和1 D_ResNet所提取的可见/近红外光谱特征进行融合,得到的融合模型ResNet_OP对溏心皮蛋和沙心皮蛋分类准确率达到98.3%.研究成果提供了一种更低计算成本、更高准确率的溏心皮蛋和沙心皮蛋分类模型,对于指导皮蛋生产和提升皮蛋品质具有重要意义.

The soft-yolk preserved eggs(SYP eggs)and hard-yolk preserved eggs(HYP eggs)each possess distinct textures and flavors,captivating their respective discerning consumers.Presently,artisans can only discern whether an egg is a soft-yolk or hard-yolk preserved egg based on the duration of the brining process,a method that not only demands their extensive expertise but also entails a high rate of misjudgment.To address this issue,the design of infrared imaging and visible/near-infrared spectroscopy acquisition devices was introduced,alongside a classification model for SYP eggs and HYP eggs.Utilizing gathered infrared image data,an enhanced model,ResNet_MLCA,was crafted by incorporating a mixed local channel attention(MLCA)module into the ResNet18 framework,achieving a noteworthy classification accuracy of 95.0%in distinguishing SYP eggs from HYP eggs.Furthermore,leveraging visible/near-infrared spectroscopy data,a one-dimensional residual module was designed,and through its stacking,the 1D_ResNet model for feature extraction and classification of visible/near-infrared spectroscopy data was developed,yielding an identical accuracy of 95.0%in discriminating SYP eggs from HYP eggs.In a bid to further augment detection accuracy,the infrared image features extracted by the ResNet_MLCA model and the visible/near-infrared spectroscopy features extracted by the 1D_ResNet were amalgamated.The resultant fusion model,ResNet_OP,achieved an outstanding classification accuracy of 98.3%in distinguishing SYP eggs from HYP eggs.In summary,this research can offer a novel,cost-effective,and high-precision classification model for SYP eggs and HYP eggs,which held significant implications for guiding preserved egg production and enhancing its quality.Additionally,the proposed method offered a theoretical reference for enhancing the performance of classification models for other agricultural products,aiming to further increase their accuracy and reduce the number of parameters in the fusion model.

汤文权;王巧华;张浩;杨烝;范维

华中农业大学工学院,武汉 430070华中农业大学工学院,武汉 430070||农业农村部长江中下游农业装备重点实验室,武汉 430070华中农业大学工学院,武汉 430070华中农业大学工学院,武汉 430070华中农业大学工学院,武汉 430070||国家蛋品加工技术研发分中心,武汉 430070

轻工业

皮蛋多模态信息融合ResNet红外图像可见/近红外光谱溏心沙心

preserved eggmultimodal information fusionResNetinfrared imagingvisible/near-infrared spectroscopysoft-yolk and hard-yolk

《农业机械学报》 2025 (1)

92-101,10

国家自然科学基金面上项目(32072302)、湖北省重点研发计划项目(20230611)和重庆市技术创新与应用发展专项乡村振兴(对口帮扶)项目(CSTB2023TIAD-ZXX0011)

10.6041/j.issn.1000-1298.2025.01.010

评论