基于迭代-帧间双预测的CUP-VISAR重构方法OA北大核心
CUP-VISAR image reconstruction based on iterative-interframe double prediction
CUP-VISAR系统是将超快压缩成像(CUP)与二维任意反射面速度干涉仪(VISAR)结合的新技术.针对CUP-VISAR系统在含有大噪声情况下图像重构质量明显下降的问题,提出了一种基于迭代-帧间双预测的压缩超快摄影重构方法.对帧间图像数据的相关性及同一帧图像前后迭代的关联性进行研究,将压缩图像重构问题表述为一个基于卡尔曼预测和帧间预测的迭代-帧间双预测优化问题,并使用即插即用广义交替投影(PnP-GAP)框架来有效解决优化问题.仿真实验表明,在大高斯噪声条件下,所提方法的最小峰值信噪比(PSNR)提高了 3.18~2.11 dB,最小结构相似性(SSIM)提高了 20.30%~8.22%.实际结果表明,所提方法得到的条纹图像清晰度更高,重构的线-VISAR(1D-VISAR)条纹移动趋势更清晰,验证了算法的有效性.
CUP-VISAR system is a new technology that combines Compressed Ultrafast Photography(CUP)with two-dimensional Velocity Interferometer System for Any Reflector(VISAR).To solve the problem that the image reconstruction quality of CUP-VISAR system decreases obviously under the condition of large noise,a compressed ultrafast photography reconstruction method based on iteration-interframe dual prediction is proposed.Using this method,the correlation of inter-frame image data and the correlation of iterations before and after the same frame image are studied.The compressed image reconstruction problem is presented as an iteration-inter frame dual prediction optimization problem based on Kalman prediction and inter-frame prediction,and the Plug-and-Play Generalized Alternating Projection(PnP-GAP)framework is used to solve the optimization problem effectively.Simulation results show that the minimum Peak Signal-to-Noise Ratio(PSNR)and minimum Structure Similarity Index Measure(SSIM)of the proposed method are increased by 3.18-2.11 dB and 20.30%-8.22%under large Gaussian noise conditions.The practical results show that the proposed method can obtain higher definition of fringe image,and the reconstructed line-VISAR(1D-VISAR)fringe movement trend is clearer,which verifies the effectiveness of the algorithm.
温懿岚;郑铠涛;李海艳;甘华权;黄运保;王峰;理玉龙;关赞洋;余远平;黄庆鑫
广东工业大学机电工程学院,广州 510006广东工业大学机电工程学院,广州 510006广东工业大学机电工程学院,广州 510006广东工业大学机电工程学院,广州 510006广东工业大学机电工程学院,广州 510006中国工程物理研究院激光聚变研究中心,四川 绵阳 621900中国工程物理研究院激光聚变研究中心,四川 绵阳 621900中国工程物理研究院激光聚变研究中心,四川 绵阳 621900广东工业大学机电工程学院,广州 510006广东工业大学机电工程学院,广州 510006
计算机与自动化
CUP-VISAR帧间预测卡尔曼预测即插即用广义交替投影图像重构
CUP-VISARinterframe predictionKalman predictionplug-and-play generalised alternating projectionimage reconstruction
《强激光与粒子束》 2025 (2)
60-69,10
国家自然科学基金项目(12127810、51975125)
评论