| 注册
首页|期刊导航|全球能源互联网|基于片段数据的储能电池SOH估计

基于片段数据的储能电池SOH估计

耿萌萌 范茂松 魏斌 张明杰 胡晨

全球能源互联网2025,Vol.8Issue(1):57-66,10.
全球能源互联网2025,Vol.8Issue(1):57-66,10.DOI:10.19705/j.cnki.issn2096-5125.2025.01.007

基于片段数据的储能电池SOH估计

SOH Estimation of Energy Storage Batteries Based on Fragmented Data

耿萌萌 1范茂松 1魏斌 1张明杰 1胡晨1

作者信息

  • 1. 中国电力科学研究院有限公司,北京市 海淀区 100192
  • 折叠

摘要

Abstract

To improve the accuracy and engineering adaptability of State of Health(SOH)for energy storage batteries,firstly,by analysing the operating data of a certain solar energy storage power station,design simulated operating conditions experiments.Based on the characteristics of the data and aging mechanism,the charging voltage difference within 30 minutes before 3.41 V(with time intervals of 1 minute,3 minutes,and 5 minutes respectively)was selected as the characteristic parameter for evaluating the SOH of energy storage batteries.Using the cyclic data of a 20 Ah lithium iron phosphate battery and combining it with a genetic algorithm(GA)improved the back propagation(BP)neural network for modelling,the accuracy of the model was verified using 1200 sessions of data that were not involved in model training.Among them,the model with a 1-minute interval voltage difference as the characteristic parameter had the highest accuracy,and the mean absolute percentage error(MAPE)was 0.37%,the root mean square error(RMSE)is 0.456 5.Secondly,model transfer reduced the maximum error in estimating SOH for 260 Ah lithium iron phosphate batteries from 5.52%to 1.89%.Finally,the model was used to perform batch SOH estimation on a cluster of energy storage battery cells in a photovoltaic power station,with good engineering adaptability.

关键词

储能锂离子电池/片段数据/GA-BP神经网络/健康状态估计/模型迁移

Key words

energy storage lithium-ion batteries/fragmented data/GA-BP neural network/estimation of SOH/model migration

分类

动力与电气工程

引用本文复制引用

耿萌萌,范茂松,魏斌,张明杰,胡晨..基于片段数据的储能电池SOH估计[J].全球能源互联网,2025,8(1):57-66,10.

基金项目

国家电网有限公司科技项目(5100-202155307A-0-0-00).Science and Technology Foundation of SGCC(5100-202155307A-0-0-00). (5100-202155307A-0-0-00)

全球能源互联网

OA北大核心

2096-5125

访问量0
|
下载量0
段落导航相关论文