中国农业新质生产力发展水平测度与影响因素分析OA
The Development Level of New Quality Productive Forces in Chinese Agriculture and Analysis of Influencing Factors:Empirical Evidence Based on the XGBoost Model
发展农业新质生产力对于推动我国农业现代化和实现农业强国战略目标发挥重要作用.为客观量化影响农业新质生产力水平关键因素的非线性效应与重要性,提出一种基于机器学习方法的农业新质生产力发展水平测度和分析框架.利用极端梯度提升(XGBoost)算法、SHAP机器学习解释方法和TOPSIS模型测度和分析2012年至2022年中国农业新质生产力发展水平.此外,应用五折交叉验证对机器学习回归模型结果进行稳健性检验.最后采用SHAP模型深入分析影响我国农业新质生产力水平的关键驱动因素,探索促进我国农业新质生产力发展路径.研究结果表明:我国农业新质生产力水平整体呈上升趋势,但总体水平较低;科技创新人才、高新技术产业发展规模和数字经济发展水平是影响我国农业新质生产力发展水平的关键驱动因素,且具有显著的正向效应和非线性特征.
The development of agricultural new quality productivity plays an important role in promot-ing the modernization of China's agriculture and achieving the strategic goal of a strong agricultural country.In order to objectively quantify the nonlinear effects and importance of key factors affecting the level of agricultural new quality productivity.The article aims to propose a framework for measuring and analyzing the development level of agricultural new quality productivity based on machine learning methods.The Extreme Gradient Boosting(XGBoost)algorithm,SHAP machine learning interpreta-tion method and TOPSIS model are utilized to measure and analyze the development level of agricul-tural new quality productivity in China from 2012 to 2022.In addition,five-fold cross-validation is ap-plied to test the robustness of the machine learning regression model results.Finally,the SHAP model is used to deeply analyze the key driving factors affecting the level of China's agricultural new quality productivity and explore the path to promote the development of China's agricultural new qual-ity productivity.The results of the study show that:the overall level of China's agricultural new quality productivity level is on an upward trend,but the overall level is low;scientific and technological inno-vation talents,the scale of development of high-tech industry and the level of development of the digi-tal economy are the key driving factors affecting the level of development of China's agricultural new quality productivity,and they have a significant positive effect and non-linear characteristics.
吴展;瞿廷鸿
上海海洋大学经济管理学院,上海 201306上海海洋大学经济管理学院,上海 201306
计算机与自动化
机器学习SHAP模型XGBoost算法农业新质生产力驱动因素
machine learningSHAP modelXGBoost algorithmnew quality productivitydriving factors
《上海管理科学》 2025 (1)
59-66,8
评论