基于多类特征的社交网络影响力预测研究综述OA
A Review of Research on Social Network Influence Prediction Based on Multi-Class Features
[目的]影响力预测作为社交网络分析的重要内容,对于舆情监控、网络营销、情报分析、个性化推荐、广告定位、传播预测等多个领域具有重要的社会价值和现实意义.早期基于特征工程的影响力预测方法,通过提取并构建关键特征,建立不同特征与流行度之间的关系模型.本文重点关注与社交网络影响力相关的多类特征,从多类特征提取、预测模型构建和预测评估方法等方面进行了研究和综述,旨在综合分析已有研究方法,为提高社交网络影响力预测精度提供借鉴和参考.[方法]本文立足于当前广泛采用的深度学习方法,通过查阅文献资料,对社交网络的视觉特征、文本特征、情感特征、时间特征和用户特征分别进行了总结和阐述,并对基于多类特征的社交网络影响力预测方法的研究现状和局限性进行了分析.[结论]随着深度学习理论的发展,深度特征提取和预测模型构建取得了突破性进展,但目前在社交网络影响力预测方面,基于多类特征的特征组合预测方法仍然存在不足,需要研究更有效的特征预提取模型来提升社交网络影响力预测精度.
[Objective]Influence prediction,as an important content of social network analysis,has impor-tant social value and practical significance in many fields such as public opinion monitoring,on-line marketing,intelligence analysis,personalized recommendation,advertisement positioning,and communication prediction.Early influence prediction methods based on feature engineering established the relationship between different features and popularity by extracting and construct-ing key features.This paper focuses on the multi-class features related to social network influ-ence,and conducts research and review from the aspects of multi-class feature extraction,predic-tion model construction,and prediction evaluation methods,aiming to comprehensively analyze the existing re-search methods,and provide reference for improving the accuracy of social network influence prediction.[Meth-ods]Based on the current widely adopted deep learning methods,this paper summarizes and elaborates on the visu-al,textual,emotional,temporal,and user features of social networks by reviewing the literature,and analyzes the current research status and limitations of the influence prediction methods of social networks based on multi-class features.[Conclusions]With the development of deep learning theory,breakthrough progress has been made in deep feature extraction and prediction model construction,but at present,in terms of social network influence pre-diction,feature combination prediction methods based on multi-class features are still insufficient,and it is neces-sary to study more effective feature pre-extraction models to improve social network influence prediction accuracy.
水映懿;张琪;李根;张士豪;吴尚
中国人民公安大学,信息网络安全学院,北京 100038中国人民公安大学,信息网络安全学院,北京 100038中国人民公安大学,信息网络安全学院,北京 100038中国人民公安大学,信息网络安全学院,北京 100038北京市公安局网络安全保卫总队,北京 100029
社交网络影响力预测多类特征深度学习
social networksinfluence predictionmulti-class featuresdeep learning
《数据与计算发展前沿》 2025 (1)
2-18,17
中央高校基本科研业务费专项资金资助(2020JKF316)
评论