首页|期刊导航|数据与计算发展前沿|基于集成学习的AI生成图像对抗检测框架

基于集成学习的AI生成图像对抗检测框架OA

Adversarial Detection Framework for AI-Generated Images Based on Ensemble Learning

中文摘要英文摘要

[目的]随着生成对抗网络和扩散模型生成模型的快速发展,AI生成图像的质量不断提高,人类肉眼难以将其与真实图像区分.这些技术已经商业产品化,用户可通过软件产品一键式操作以实现文本到图像生成,产生了一定的商业价值,但也给司法鉴定带来了挑战,图像能否直接作为证据使用必将是法庭科学的重要研究课题.因此,如何有效地检测AI生成图像成为一个亟待解决的重要问题.[方法]现有的AI生成图像检测方法主要集中在检测单一生成模型的图像上.然而,一对一检测方法在面对未见过的生成模型时泛化能力较差.本文提出一种基于集成学习的Stacking策略集成多种一对一检测方法的对抗检测框架,通过使用随机森林模型结合为每个AI生成图像软件特化训练的单一检测器的输出,以替代直接泛化.[结果]实验结果表明,该框架在GenImage数据集上达到了98.36%的总体准确率,在本文设计的人工数据集上表现出较强的鲁棒性.单一检测器输出的分数被保留,为后续的归因工作提供可能.[结论]对抗检测框架具有可观的应用前景,作为一个可以灵活整合和更新各种检测技术的平台,为生成图像检测和归因研究提供一个更全和有效的解决方案.

[Objective]With the rapid development of generative adversarial networks(GANs)and the generative diffusion models,the quality of AI-generated images has been continuously im-proved reaching to the point where it is challenging for the human eye to distinguish the AI-gen-erated images from real images.This technology has been commercialized,allowing users to generate images from text with one-click software products,creating certain commercial value.However,they also pose challenges to forensic identification.Using images as a direct evi-dence is undoubtedly an important research topic in forensic science.Therefore,detecting AI-generated images has become a critical issue that needs to be addressed.[Methods]Existing methods for detecting AI-generated images mainly focus on detecting images from a single generative model.However,the one-to-one detection method is poor in generalization capabilities when facing unseen generative models.This paper proposes a Stacking-based ensemble learning strategy that integrates various one-to-one detec-tion methods into an adversarial detection framework.It uses a random forest model to combine the output of in-dividual detectors specifically trained for different AI-generated image software,instead of direct generalization.[Results]Experimental results show that the framework achieved an overall accuracy of 98.36%on the GenIm-age dataset and demonstrated strong robustness on the artificial dataset designed in this study.The scores from the single detector outputs are retained,providing possibilities for subsequent attribution work.[Conclusions]The adversarial detection framework is promising to be used as a platform that can flexibly integrate and update various detection technologies,providing a more comprehensive and effective solution for AI-generated image de-tection and attribution research..

金维正;唐云祁

中国人民公安大学侦查学院,北京 100038中国人民公安大学侦查学院,北京 100038

AI生成图像检测集成学习图像检测框架

AI-generated images detectionensemble learningimage detection framework

《数据与计算发展前沿》 2025 (1)

68-85,18

中国人民公安大学刑事科学技术双一流创新研究专项(2023SYL06)

10.11871/jfdc.issn.2096-742X.2025.01.005

评论