基于多智能体深度强化学习的低轨星座跳波束资源调度研究OA北大核心
Research on low earth orbit constellation beam hopping resource scheduling based on multi-agent deep reinforcement learning
针对低轨星座跳波束资源调度的需求,提出一种基于多智能体深度强化学习的低轨星座跳波束资源调度方法.通过多目标优化的选星接入方式,建立卫星与服务区域之间的映射关系.在此基础上,根据业务类型和QoS需求的多样性,采用混合专家模型的方法,构建一个资源调度多智能体,用于星上资源与跳波束图案的实时决策调度.仿真结果表明,与传统方法相比,所提资源调度方法不仅能满足不同业务对时延和吞吐量的性能需求,还能有效平衡算法的复杂度,适应多样化业务的融合传输需求,应对业务流量的时空分布不均和动态变化,具有较强的泛化能力.
A low earth orbit constellation beam hopping resource scheduling method based on multi-agent deep reinforce-ment learning was proposed to meet the requirements of low earth orbit constellation beam hopping resource scheduling.The mapping relationship between the satellite and the service area was established by optimizing the access of multi-target satellite selection.On this basis,according to the diversity of service types and QoS requirements,based on the concept of mixture of experts,a resource scheduling multi-agent was constructed to carry out real-time decision schedul-ing of on-board resources and beam hopping patterns.The simulation results show that compared with the traditional methods,the proposed resource scheduling method can not only meet the performance requirements of different services on delay and throughput,but also effectively balance the algorithm complexity.At the same time,the algorithm can adapt to the converged transmission requirements of diversified services,cope with the uneven spatiotemporal distribu-tion and dynamic changes of traffic and have strong generalization ability.
张晨;徐阳威;李宛静;王威;张更新
南京邮电大学通信与信息工程学院,江苏 南京 210003||南京邮电大学通信与网络技术国家工程研究中心,江苏 南京 210003南京邮电大学通信与信息工程学院,江苏 南京 210003||南京邮电大学通信与网络技术国家工程研究中心,江苏 南京 210003南京邮电大学通信与信息工程学院,江苏 南京 210003||南京邮电大学通信与网络技术国家工程研究中心,江苏 南京 210003南京邮电大学通信与信息工程学院,江苏 南京 210003||南京邮电大学通信与网络技术国家工程研究中心,江苏 南京 210003南京邮电大学通信与信息工程学院,江苏 南京 210003||南京邮电大学通信与网络技术国家工程研究中心,江苏 南京 210003
电子信息工程
低轨卫星跳波束深度强化学习资源调度
low earth orbit satellitebeam hoppingdeep reinforcement learningresource scheduling
《通信学报》 2025 (1)
35-51,17
国家重点研发计划基金资助项目(No.2022YFB2902600) The National Key Research and Development Program of China(No.2022YFB2902600)
评论