首页|期刊导航|通信学报|内容新鲜度保障的车联网多智能体缓存分发策略

内容新鲜度保障的车联网多智能体缓存分发策略OA北大核心

Multi-agent caching distribution strategy for content freshness guarantee in IoV

中文摘要英文摘要

车辆需要频繁动态变化内容支持车联网(IoV)时延敏感型应用,这会增加宏基站(MBS)负载,降低内容新鲜度.利用边缘缓存将最新内容提前缓存在小基站(SBS)能有效降低车辆时延和提高内容新鲜度.对影响时延和内容信息年龄(AoI)进行深入分析,提出一种内容新鲜度保障的多智能体强化学习(MARL)算法,通过优化缓存分发决策保障车辆获得高新鲜度内容.仿真结果表明,所提算法不仅收敛速度更快,而且在降低车辆时延和提升内容新鲜度方面表现出更好效果.

Vehicles need to dynamically changing content to support latency-sensitive applications in Internet of vehicles(IoV),thereby increasing the load on the macro base station(MBS)and reducing the freshness of content.Utilizing edge caching to cache the latest content in small base station(SBS)can effectively reduce the latency and improve the content freshness.An in-depth analysis was conducted on latency and content's age of information(AoI).A content freshness as-surance multi-agent reinforcement learning(MARL)algorithm was proposed,which optimized cache distribution deci-sions to guarantee high freshness.Simulation results show that the proposed algorithm not only converges faster but also demonstrates better performance in reducing latency and enhancing content freshness.

崔亚平;石宏吉;吴大鹏;何鹏;王汝言

重庆邮电大学通信与信息工程学院,重庆 400065||先进网络与智能互联技术重庆市高校重点实验室,重庆 400065||泛在感知与互联重庆市重点实验室,重庆 400065重庆邮电大学通信与信息工程学院,重庆 400065||先进网络与智能互联技术重庆市高校重点实验室,重庆 400065||泛在感知与互联重庆市重点实验室,重庆 400065重庆邮电大学通信与信息工程学院,重庆 400065||先进网络与智能互联技术重庆市高校重点实验室,重庆 400065||泛在感知与互联重庆市重点实验室,重庆 400065重庆邮电大学通信与信息工程学院,重庆 400065||先进网络与智能互联技术重庆市高校重点实验室,重庆 400065||泛在感知与互联重庆市重点实验室,重庆 400065重庆邮电大学通信与信息工程学院,重庆 400065||先进网络与智能互联技术重庆市高校重点实验室,重庆 400065||泛在感知与互联重庆市重点实验室,重庆 400065

电子信息工程

车联网边缘缓存信息年龄多智能体强化学习

Internet of vehiclesedge cachingage of informationmulti-agent reinforcement learning

《通信学报》 2025 (1)

52-66,15

国家自然科学基金资助项目(No.61801065,No.62271096,No.61871062,No.U20A20157,No.62061007)重庆市教委科学技术研究基金资助项目(No.KJQN202000603,No.KJQN202300621)重庆市自然科学基金资助项目(No.CSTB2022NSCQ-MSX0468,No.cstc2020jcyjzdxmX0024,No.cstc2021jcyjmsxmX0892,No.CSTB2023NSCQ-LZX0134)重庆市高校创新研究群体基金资助项目(No.CXQT20017)重邮信通青创团队支持计划基金资助项目(No.SCIE-QN-2022-04)四川省重点研发计划基金资助项目(No.2024YFHZ0093) The National Natural Science Foundation of China(No.61801065,No.62271096,No.61871062,No.U20A20157,No.62061007),The Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN202000603,No.KJQN202300621),The Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-MSX0468,No.cstc2020jcyjzdxmX0024,No.cstc2021jcyjmsxmX0892,No.CSTB2023NSCQ-LZX0134),The University Innovation Research Group of Chongqing(No.CxQT20017),The Youth Innovation Group Support Program of ICE Discipline of CQUPT(No.SCIE-QN-2022-04),The Key Re-search and Development Program of Sichuan Province(No.2024YFHZ0093)

10.11959/j.issn.1000-436x.2025013

评论