| 注册
首页|期刊导航|通信学报|基于零集中差分隐私的联邦学习激励方案

基于零集中差分隐私的联邦学习激励方案

李梦倩 田有亮 张军鹏 赵冬梅

通信学报2025,Vol.46Issue(1):79-92,14.
通信学报2025,Vol.46Issue(1):79-92,14.DOI:10.11959/j.issn.1000-436x.2025008

基于零集中差分隐私的联邦学习激励方案

Incentive scheme for federated learning based on zero-concentrated differential privacy

李梦倩 1田有亮 2张军鹏 3赵冬梅3

作者信息

  • 1. 贵州大学公共大数据国家重点实验室,贵州 贵阳 550025||贵州大学计算机科学与技术学院,贵州 贵阳 550025
  • 2. 贵州大学公共大数据国家重点实验室,贵州 贵阳 550025||贵州大学大数据与信息工程学院,贵州 贵阳 550025
  • 3. 河北师范大学河北省网络与信息安全重点实验室,河北 石家庄 050024
  • 折叠

摘要

Abstract

To solve problems of unfair client selection and inefficient model training in federated learning,a privacy-preserving federated learning framework was proposed based on the incentive mechanism named zCDP-FL.An incen-tive mechanism algorithm,SRAI,was designed to maximize system benefits by applying the second price and the re-verse auction to the client's selection strategy.In addition,a dynamic allocation algorithm for the privacy budget was proposed based on the zero-concentrated differential privacy to realize the dynamic adjustment of noise scale during the training,which provided a stronger privacy guarantee under the strict privacy constraint.Theoretical analyses and simula-tion experiments demonstrate that zCDP-FL can effectively prevent privacy leakage and enhance 2.13%~3.62%model training efficiency.

关键词

联邦学习/零集中差分隐私/激励机制/隐私预算/动态分配

Key words

federated learning/zero-concentrated differential privacy/incentive mechanism/privacy budget/dynamic al-location

分类

电子信息工程

引用本文复制引用

李梦倩,田有亮,张军鹏,赵冬梅..基于零集中差分隐私的联邦学习激励方案[J].通信学报,2025,46(1):79-92,14.

基金项目

国家自然科学基金资助项目(No.62272123,No.61672206,No.62062020) (No.62272123,No.61672206,No.62062020)

中央引导地方科技发展基金资助项目(No.236Z0104G) (No.236Z0104G)

河北省科技计划基金资助项目(No.22567606H) (No.22567606H)

贵州省高层次创新型人才基金资助项目(No.[2020]6008) (No.[2020]6008)

贵州省科技计划基金资助项目(No.[2020]5017,No.[2022]065) The National Natural Science Foundation of China(No.62272123,No.61672206,No.62062020),Central Gov-ernment Guides Local Science and Technology Development Found Projects(No.236Z0104G),The Science and Technology Pro-gram of Hebei Province(No.22567606H),The Project of High-Level Innovative Talents of Guizhou Province(No.[2020]6008),The Science and Technology Program of Guizhou Province(No.[2020]5017,No.[2022]065) (No.[2020]5017,No.[2022]065)

通信学报

OA北大核心

1000-436X

访问量3
|
下载量0
段落导航相关论文