首页|期刊导航|通信学报|空天地一体化网络中基于联邦深度强化学习的边缘协作缓存策略

空天地一体化网络中基于联邦深度强化学习的边缘协作缓存策略OA北大核心

Federated deep reinforcement learning-based edge collaborative caching strategy in space-air-ground integrated network

中文摘要英文摘要

针对偏远地区网络覆盖范围有限的问题,将空天地一体化网络与移动边缘计算相结合,可以实现这些地区用户请求的低时延和高可靠传输,并能及时提供缓存服务.考虑到空天地一体化网络拓扑的动态变化和内容流行度不断更新的特点,首先提出了一种空天地一体化边缘协作缓存的网络架构.然后,将边缘服务器的缓存替换问题建模为马尔可夫决策过程.最后,提出了一种联邦离散柔性演员评论家(FDSAC)算法,其核心思想是将加权注意力机制融入联邦学习框架中,并将双向长短期记忆网络集成到DSAC模型.以重构后的奖励函数为优化目标,通过最大化长期负奖励的期望来学习最优的缓存替换策略.仿真结果表明,与其他算法相比,所提算法可以在保护用户隐私的前提下,将用户请求的缓存命中率提高18%,内容的访问时延降低25%.

To address the problem of limited network coverage in remote areas,combining space-air-ground integrated network with mobile edge computing could provide low-latency and high-reliability transmissions for user requests in these areas,as well as timely caching services.Considering the dynamic change of the topology of the space-air-ground integrated network and the content popularity being constantly updated,a network architecture of space-air-ground inte-grated edge collaborative caching was proposed first.Then,the cache replacement problem for edge servers was mod-eled as a Markov decision process.Finally,a federated discrete soft actor-critic(FDSAC)algorithm was proposed,with the core idea of integrating a weighted attention mechanism into the federated learning framework and incorporating a bi-directional long short-term memory network into the DSAC model.With the reconfigured reward function as the optimi-zation objective,the optimal cache replacement policy was learned by maximizing the expectation of negative long-term rewards.Simulation results show that compared with other algorithm,the proposed algorithm can improve the cache hit rate of user requests by 18%and reduce the access latency of content by 25%while protecting user privacy.

刘亮;荆腾祥;段洁;毛武平;燕洪成;马文杰

重庆邮电大学通信与信息工程学院,重庆 400065重庆邮电大学通信与信息工程学院,重庆 400065重庆邮电大学通信与信息工程学院,重庆 400065重庆邮电大学通信与信息工程学院,重庆 400065中国空间技术研究院,北京 100094中国空间技术研究院,北京 100094

电子信息工程

空天地一体化网络移动边缘计算缓存离散柔性演员评论家联邦学习

space-air-ground integrated networkmobile edge computingcachingdiscrete soft actor-criticfederated learning

《通信学报》 2025 (1)

93-107,15

国家自然科学基金资助项目(No.62171070,No.61701058)重庆市教委科学技术研究基金资助项目(No.KJQN202200615)The National Natural Science Foundation of China(No.62171070,No.61701058),The Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN202200615)

10.11959/j.issn.1000-436x.2025014

评论