首页|期刊导航|通信学报|基于多粒度融合和跨尺度感知的跨模态行人重识别

基于多粒度融合和跨尺度感知的跨模态行人重识别OA北大核心

Cross-modality person re-identification based on multi-granularity fusion and cross-scale perception

中文摘要英文摘要

提出一种基于多粒度融合和跨尺度感知的跨模态行人重识别网络,该网络能够有效提取行人图像特征并减少图像间的模态差异.首先,提出多尺度特征融合注意力机制并设计一种多粒度非局部融合框架,有效融合不同模态和不同尺度的图像特征;其次,提出一种跨尺度特征信息感知策略,该策略可有效降低因视角变化、行人背景变化等产生的无关噪声对行人判别的影响;最后,针对行人图像特征信息不足,设计并行空洞卷积残差模块,获取更为丰富的行人特征信息.将所提方法在2个标准公共数据集与当前先进的跨模态行人重识别方法比较.实验结果表明,所提方法在SYSU-MM01数据集的全搜索模式下的R-1和平均精度(mAP)分别达到75.9%和73.3%,在RegDB数据集的可见光到红外的搜索(VIS to IR)模式下的Rank-1和mAP分别达到93.7%和89.3%,优于所对比的方法,充分证实了所提方法的有效性.

A cross-modality person re-identification network based on multi-granularity fusion and cross-scale perception was proposed,which could effectively extract person image features and reduce the modality discrepancies between im-ages.Firstly,a multi-scale feature fusion attention mechanism was proposed,and a multi-granularity non-local fusion framework was designed to effectively integrate image features from different modalities and scales.Secondly,a cross-scale feature information perception strategy was proposed,which could effectively reduce the influence of irrelevant noise caused by the change of perspective and person background on person discrimination.Finally,in view of the lack of person image feature information,a parallel dilated convolution residual module was designed to obtain more abun-dant person feature information.The proposed method was compared with current state-of-the-art cross-modal person re-identification algorithms on two standard public datasets.Experimental results show that the Rank-1 and mAP of the pro-posed method reach 75.9%and 73.3%,respectively,in the all search mode of the SYSU-MM01 dataset,and 93.7%and 89.3%in the VIS to IR retrieval mode of the RegDB dataset,respectively,which is better than the compared methods,which fully confirms the effectiveness of the proposed method.

程德强;姬广凯;张皓翔;江鹤;寇旗旗

中国矿业大学信息与控制工程学院,江苏 徐州 221116中国矿业大学信息与控制工程学院,江苏 徐州 221116中国矿业大学信息与控制工程学院,江苏 徐州 221116中国矿业大学信息与控制工程学院,江苏 徐州 221116中国矿业大学计算机科学与技术学院,江苏 徐州 221116

计算机与自动化

行人重识别跨模态特征融合跨尺度信息

person re-identificationcross-modalityfeature fusioncross-scale information

《通信学报》 2025 (1)

108-123,16

国家自然科学基金资助项目(No.52204117,No.52304182)济宁市重点研发计划基金资助项目(No.2023KJHZ007)The National Natural Science Foundation of China(No.52204117,No.52304182),The Key Research and Devel-opment Program of Jining City(No.2023KJHZ007)

10.11959/j.issn.1000-436x.2025019

评论