| 注册
首页|期刊导航|燕山大学学报|基于多尺度时空特征融合的视频异常事件检测

基于多尺度时空特征融合的视频异常事件检测

李歌 肖洪兵 闫善武 王瑜 孙梅

燕山大学学报2025,Vol.49Issue(1):74-82,9.
燕山大学学报2025,Vol.49Issue(1):74-82,9.DOI:10.3969/j.issn.1007-791X.2025.01.008

基于多尺度时空特征融合的视频异常事件检测

Anomaly detection in video based on multi-scale spatio-temporal features fusion

李歌 1肖洪兵 1闫善武 1王瑜 1孙梅1

作者信息

  • 1. 北京工商大学 计算机与人工智能学院,北京 100048
  • 折叠

摘要

Abstract

In the problem of video anomalous event detection,existing research methods do not fully consider the background information interference and target scale variation in the scene,resulting in generally low detection accuracy.To address such problems,an anomalous event detection method that incorporates multi-scale spatio-temporal information is proposed.First,a coordinate attention approach is applied to make the model focus more on the regions where anomalous events occur.Second,to extract the rich spatio-temporal information at each level,a multi-branch and multi-scale feature fusion module is constructed using a dilated convolutional network.Finally,considering the diversity of normal behaviors,a regular score is proposed to further update the memory items in the memory-augmented module to improve the detection accuracy of anomalous events during the testing phase.In the experiments related to CUHK Avenue and ShanghaiTech datasets,the frame-level AUC of the proposed method reaches 88.7% and 77.5%,respectively,and meets the real-time requirements of video detection,which verifies the feasibility and effectiveness of the method.

关键词

视频异常检测/无监督学习/空洞卷积/多尺度时空特征融合/记忆增强模块

Key words

video anomaly detection/unsupervised learning/dilated convolution/multi-scaled spatio-temporal features fusion/memory-augmented module

分类

计算机与自动化

引用本文复制引用

李歌,肖洪兵,闫善武,王瑜,孙梅..基于多尺度时空特征融合的视频异常事件检测[J].燕山大学学报,2025,49(1):74-82,9.

基金项目

北京市教育委员会科技计划重点项目(KZ202110011015) (KZ202110011015)

燕山大学学报

OA北大核心

1007-791X

访问量3
|
下载量0
段落导航相关论文