| 注册
首页|期刊导航|燕山大学学报|双流运动建模-循环一致性对齐小样本动作识别算法

双流运动建模-循环一致性对齐小样本动作识别算法

胡正平 董佳伟 王昕宇

燕山大学学报2025,Vol.49Issue(1):83-94,12.
燕山大学学报2025,Vol.49Issue(1):83-94,12.DOI:10.3969/j.issn.1007-791X.2025.01.009

双流运动建模-循环一致性对齐小样本动作识别算法

Two-stream motion modeling and cycle consistency alignment for few-shot action recognition

胡正平 1董佳伟 2王昕宇2

作者信息

  • 1. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004||燕山大学 河北省信息传输与信号处理重点实验室,河北 秦皇岛 066004
  • 2. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

To address the challenge of aligning videos posed by different spatio-temporal distributions of actions,which subsequently affects the accuracy of video recognition in various scenarios,a few-shot action recognition method is proposed to model and align the two-stream features through motion modeling and cycle consistency alignment.This method bases on the high-dimensional representation of motion by modeling and aligning the dual-scale features of global frames and local patch.Firstly,a motion modeling framework based on the two-stream features is designed to reshape the spatio-temporal relationship of action representations in video sequences,achieving precise localization and semantic capture of video actions.Furthermore,to facilitate the learning of spatio-temporal correspondences between actions,the cycle consistency alignment module is introduced,which can efficiently align video actions using soft nearest neighbor and significantly improve the misalignment issues.Lastly,the model combined with attention-based temporal cross matching module to infer and classify the action categories.The experimental results demonstrate this method achieves recognition accuracies of 68.6%,77.7% and 96.9% on SSv2,HMDB51 and UCF101,respectively,and could effectively recognize video actions.

关键词

小样本学习/动作识别/双流网络/注意力机制/循环一致性对齐

Key words

few-shot learning/action recognition/two-stream network/attention mechanism/cycle consistency alignment

分类

计算机与自动化

引用本文复制引用

胡正平,董佳伟,王昕宇..双流运动建模-循环一致性对齐小样本动作识别算法[J].燕山大学学报,2025,49(1):83-94,12.

基金项目

国家自然科学基金资助项目(61771420,62001413) (61771420,62001413)

河北省自然科学基金资助项目(F2024203069) (F2024203069)

燕山大学学报

OA北大核心

1007-791X

访问量1
|
下载量0
段落导航相关论文