轻量化卷积神经网络在调门油动机故障诊断中的应用OA北大核心
Application of Lightweighting Convolutional Neural Networks in Fault Diagnosis of Adjustment Hydraulic Servomotor
针对调门油动机故障诊断困难、检修效率低的问题,利用ShuffleNetV2 网络结构高并行和低碎片化的特点,将其特征提取基本模块一维化,并针对调门油动机故障诊断 10 分类的任务,构建了一种 1D_ShuffleNetV2 轻量化网络.基于调门油动机一维振动信号,将 1D_ShuffleNetV2 与 1D_MobileNetV3、1D_ShuffleNetV1 以及传统的一维残差网络模型进行对比试验.结果表明,1D_ShuffleNetV2 的轻量化程度最高、训练时收敛速度最快、稳定性最高,且能够在保持高分类精度的同时,有效地提升数据处理速度.这为调门油动机的健康监测和故障诊断提供了一种新的技术方案,可在保证调门油动机诊断精度的同时,降低对边缘端设备的硬件资源需求.
Aimed at the difficulties in fault diagnosis and low maintenance efficiency in adjustment hydraulic servomotor,this study utilizes the high parallelism and low fragmentation characteristics of the ShuffleNetV2 network structure to one-dimensional extract its basic feature modules,and constructs a 1D_ShuffleNetV2 lightweighting network for the task of 10 classification of fault diagnosis of adjustment hydraulic servomotor.Based on the one-dimensional vibration signal of the adjustment hydraulic servomotor,this study conducts comparative experiments between 1D_ShuffleNetV2,1D_MobileNetV3,1D_ShuffleNetV1 and traditional one-dimensional residual network models.The results show that 1D_ShuffleNetV2 has the highest degree of lightness,the fastest convergence speed during training,the highest stability,and is able to effectively improve the data processing speed while maintaining high classification accuracy.This provides a new technical solution for health monitoring and fault diagnosis of adjustment hydraulic servomotors,which can reduce the hardware resource demand for edge-side devices while ensuring the diagnostic accuracy of adjustment hydraulic servomotors.
姜万录;杨旭康;赵永会;唐恩宇;吴凤和
燕山大学 河北省重型机械流体动力传输与控制实验室,河北 秦皇岛 066004||燕山大学 机械工程学院,河北 秦皇岛 066004燕山大学 河北省重型机械流体动力传输与控制实验室,河北 秦皇岛 066004||燕山大学 机械工程学院,河北 秦皇岛 066004燕山大学 河北省重型机械流体动力传输与控制实验室,河北 秦皇岛 066004||燕山大学 机械工程学院,河北 秦皇岛 066004燕山大学 河北省重型机械流体动力传输与控制实验室,河北 秦皇岛 066004||燕山大学 机械工程学院,河北 秦皇岛 066004燕山大学 机械工程学院,河北 秦皇岛 066004
机械工程
1D_ShuffleNetV2轻量化调门油动机故障诊断
1D_ShuffleNetV2lightweightingadjustment hydraulic servomotorfault diagnosis
《液压与气动》 2025 (2)
58-68,11
国家自然科学基金(52275067)河北省自然科学基金(E2023203030)
评论