| 注册
首页|期刊导航|中国空间科学技术(中英文)|基于数字孪生和机器学习的卫星未知故障检测方法

基于数字孪生和机器学习的卫星未知故障检测方法

沈英龙 蔡君亮 林佳伟 杨帆

中国空间科学技术(中英文)2025,Vol.45Issue(1):46-58,13.
中国空间科学技术(中英文)2025,Vol.45Issue(1):46-58,13.DOI:10.16708/j.cnki.1000-758X.2025.0005

基于数字孪生和机器学习的卫星未知故障检测方法

Detecting satellite unknown fault patterns using digital twin and machine learning

沈英龙 1蔡君亮 2林佳伟 2杨帆3

作者信息

  • 1. 厦门大学 航空航天学院,厦门 361102
  • 2. 北京控制工程研究所,北京 100190
  • 3. 厦门大学 航空航天学院,厦门 361102||厦门市大数据智能分析与决策重点实验室,厦门 361102
  • 折叠

摘要

Abstract

Traditional satellite fault diagnosis methods and existing data-driven diagnosis methods both face challenges in identifying unknown faults that differ from known fault types,resulting in lower reliability and safety.To address the problem,a fault diagnosis and unknown fault detection method based on satellite digital twin and machine learning models is proposed.Firstly,various types of fault-simulated data are generated using satellite digital twin,and the fidelity of digital twin data are validated using XGBoost and real satellite fault samples,achieving the diagnosis of known fault types.On this basis,considering that existing methods cannot identify the occurrence of unknown fault types precisely,an out-of-distribution detection model Con-DAGMM is proposed,which is trained on normal data and known fault data to provide warnings for unknown fault.Experiments are conducted using digital twin data and satellite real fault data.The experimental results demonstrate that the proposed method achieves high fault diagnosis accuracy with an average accuracy of 98.8%on the test data.Furthermore,Con-DAGMM achieve high-performance unknown fault detection,outperforming Deep-SVDD and other comparison methods in precision,recall and F1 scores.The results indicate that satellite digital twin can overcome the scarcity of fault samples in satellite historical data,and the out-of-distribution detection approach can be successfully applied to warning of satellite unknown faults,enhancing the satellite's safety and reliability.

关键词

卫星控制系统/未知故障检测/故障诊断/数字孪生/机器学习/分布外检测

Key words

satellite control system/unknown fault detection/fault diagnosis/digital twin/machine learning/out-of-distribution detection

分类

航空航天

引用本文复制引用

沈英龙,蔡君亮,林佳伟,杨帆..基于数字孪生和机器学习的卫星未知故障检测方法[J].中国空间科学技术(中英文),2025,45(1):46-58,13.

基金项目

国家自然科学基金(62173282) (62173282)

厦门市自然科学基金(3502Z20227180) (3502Z20227180)

中国空间科学技术(中英文)

OA北大核心

1000-758X

访问量0
|
下载量0
段落导航相关论文