| 注册
首页|期刊导航|中山大学学报(医学科学版)|基于随机森林的冠状动脉狭窄风险识别模型

基于随机森林的冠状动脉狭窄风险识别模型

吕勇峰 王钰婧 张乐怡 李一心 原娜 田晶

中山大学学报(医学科学版)2025,Vol.46Issue(1):138-146,9.
中山大学学报(医学科学版)2025,Vol.46Issue(1):138-146,9.

基于随机森林的冠状动脉狭窄风险识别模型

Risk Identification Model of Coronary Artery Stenosis Constructed Based on Random Forest

吕勇峰 1王钰婧 2张乐怡 2李一心 2原娜 3田晶4

作者信息

  • 1. 山西医科大学第一临床医学院,山西 太原 030000
  • 2. 山西医科大学医学科学院,山西 太原 030000
  • 3. 公共卫生学院卫生统计学教研室,山西 太原 030000
  • 4. 山西医科大学第一医院心血管内科,山西 太原 030000||重大疾病风险评估山西省重点实验室,山西 太原 030000
  • 折叠

摘要

Abstract

[Objective]To establish a risk recognition model for coronary artery stenosis by using a machine learning method and to identify the key causative factors.[Methods]Patients aged≥18 years,diagnosed with coronary heart disease through coronary angiography from January 2013 to May 2020 in two prominent hospitals in Shanxi Province,were continuously enrolled.Logistic regression,back propagation neural network(BPNN),and random forest(RF)algorithms were used to construct models for detecting the causative factors of coronary artery stenosis.Sensitivity(TPR),specificity(TNR),accuracy(ACC),positive predictive value(PV+),negative predictive value(PV-),area under subject operating characteristic curve(AUC),and calibration curve were used to compare the discrimination and calibration performance of the models.The best model was then employed to predict the main risk variables associated with coronary stenosis.[Results]The RF model exhibited superior comprehensive performance compared to logistic regression and BPNN models.The TPR values for logistic regression,BPNN,and RF models were 75.76%,74.30%,and 93.70%,while ACC values were 74.05%,72.30%,and 79.49%,respectively.The AUC values were:logistic regression 0.739 9;BPNN 0.723 1;RF 0.752 2.Manifestations such as chest pains,abnormal ST segments on ECG,ventricular premature beats with hypertension,atrial fibrillation,regional wall motion abnormalities(RWMA)by color echocardiography,aortic regurgitation(AR),pulmonary insufficiency(PI),family history of cardiovascular diseases,and body mass index(BMI)were identified as top ten important variables affecting coronary stenosis according to the RF model.[Conclusions]Random forest model shows the best comprehensive performance in identification and accurate assessment of coronary artery stenosis.The prediction of risk factors affecting coronary artery stenosis can provide a scientific basis for clinical intervention and help to formulate further diagnosis and treatment strategies so as to delay the disease progression.

关键词

Gensini积分/反向传播神经网络/随机森林/冠状动脉狭窄/机器学习

Key words

Gensini score/back propagation neural network/random forests/coronary artery stenosis/machine learning

分类

医药卫生

引用本文复制引用

吕勇峰,王钰婧,张乐怡,李一心,原娜,田晶..基于随机森林的冠状动脉狭窄风险识别模型[J].中山大学学报(医学科学版),2025,46(1):138-146,9.

基金项目

国家自然科学基金(82103958) (82103958)

山西省创新人才团队专项计划项目(202204051001026) (202204051001026)

山西省留学人员科技活动择优资助项目(20210022) (20210022)

中山大学学报(医学科学版)

OA北大核心

1672-3554

访问量1
|
下载量0
段落导航相关论文