| 注册
首页|期刊导航|重庆邮电大学学报(自然科学版)|原型对比学习驱动的鲁棒性关系抽取方法

原型对比学习驱动的鲁棒性关系抽取方法

吴涛 徐敖远 田侃 先兴平 袁野 张姝 曹新汶

重庆邮电大学学报(自然科学版)2025,Vol.37Issue(1):17-28,12.
重庆邮电大学学报(自然科学版)2025,Vol.37Issue(1):17-28,12.DOI:10.3979/j.issn.1673-825X.202401280025

原型对比学习驱动的鲁棒性关系抽取方法

Robust relation extraction method based on prototypical contrastive learning

吴涛 1徐敖远 1田侃 2先兴平 1袁野 3张姝 2曹新汶1

作者信息

  • 1. 重庆邮电大学 网络空间安全与信息法学院,重庆 400065
  • 2. 重庆邮电大学 重庆邮电大学-重庆中国三峡博物馆智慧文博联合实验室,重庆 400065
  • 3. 重庆邮电大学 经济管理学院,重庆 400065
  • 折叠

摘要

Abstract

Relation extraction aims to identify semantic relationships between entity pairs in unstructured text.However,existing methods cannot be flexibly applied to open-domain scenarios,and it remains a significant challenge in this field to adaptively perform relation extraction in an open set environment.To identify unknown class samples in relation extraction problem,a robust relation extraction method driven by prototype contrastive learning is proposed.Initializing a learnable prototype center for each class based on Gaussian distribution,the method improves the contrastive learning loss function to reduce the distance between samples of the same class and their class prototype.Further,it enhances the model by adding a regularization term to constrain the difference between the output probability distribution of samples and prototypes of dif-ferent classes.Compared to baseline methods,the proposed approach achieves a respective improvement of 2.93%,3.16%,and 3.18% in open set accuracy on three datasets,without decreasing accuracy on closed sets.This demonstrates the mod-el's ability to reduce the distance between samples of the same class in feature space while pushing apart samples of differ-ent classes,effectively enhancing the model's robustness in detecting samples of unknown relation categories in open set scenarios without affecting known relation categories.

关键词

关系抽取/开集识别/鲁棒性分类/原型学习

Key words

relation extraction/open set recognition/robust classification/prototype contrastive learning

分类

信息技术与安全科学

引用本文复制引用

吴涛,徐敖远,田侃,先兴平,袁野,张姝,曹新汶..原型对比学习驱动的鲁棒性关系抽取方法[J].重庆邮电大学学报(自然科学版),2025,37(1):17-28,12.

基金项目

国家自然科学基金项目(62376047,62106030) (62376047,62106030)

重庆市自然科学基金创新发展联合基金重点项目(CSTB2023NSCQ-LZX0003,CSTB2023NSCQ-LMX0023) (CSTB2023NSCQ-LZX0003,CSTB2023NSCQ-LMX0023)

重庆市教委科学技术研究计划重点项目(KJZD-K202300603) (KJZD-K202300603)

重庆市技术创新与应用发展面上项目(CSTB2022TIAD-GPX0014)National Natural Science Foundation of China(62376047,62106030) (CSTB2022TIAD-GPX0014)

Key Projects of Chongqing Natural Science Foundation Innovation and Development Joint Fund(CSTB2023NSCQ-LZX0003,CSTB2023NSCQ-LMX0023) (CSTB2023NSCQ-LZX0003,CSTB2023NSCQ-LMX0023)

Key Project of Science and Technology Research Program of Chongqing Education Commission(KJZD-K202300603) (KJZD-K202300603)

Project of Chongqing Technological In-novation and Application Development Project(CSTB2022TIAD-GPX0014) (CSTB2022TIAD-GPX0014)

重庆邮电大学学报(自然科学版)

OA北大核心

1673-825X

访问量1
|
下载量0
段落导航相关论文