| 注册
首页|期刊导航|重庆邮电大学学报(自然科学版)|基于WHIoU损失的安检图像违禁物品检测算法

基于WHIoU损失的安检图像违禁物品检测算法

朱雷 李国权 武瑞恒 黄正文 庞宇

重庆邮电大学学报(自然科学版)2025,Vol.37Issue(1):46-56,11.
重庆邮电大学学报(自然科学版)2025,Vol.37Issue(1):46-56,11.DOI:10.3979/j.issn.1673-825X.202312180422

基于WHIoU损失的安检图像违禁物品检测算法

WHIoU loss-based detection algorithm of prohibited items in security check images

朱雷 1李国权 1武瑞恒 2黄正文 2庞宇3

作者信息

  • 1. 重庆邮电大学 通信与信息工程学院,重庆 400065
  • 2. 伦敦布鲁内尔大学 电子与电气工程系,英国 伦敦 UB8 3PH
  • 3. 光电信息感测与微系统重庆市重点实验室,重庆 400065
  • 折叠

摘要

Abstract

To address the issues of overlapping prohibited items and complex backgrounds in X-ray security inspection ima-ges,this paper proposes a modified X-ray inspection image detection algorithm based on YOLOv7.An attention feature fu-sion module is constructed in the neck network of the model,where both spatial and channel attention mechanisms are ap-plied to extract shallow detail features and deep semantic features,reducing noise information redundancy and minimizing the loss of effective features.Additionally,the WHIoU Loss is redesigned to replace CIoU Loss as the new bounding box loss function.This modification ensures that the aspect ratio penalty function still constrains the model when the predicted and ground truth boxes maintain the same linear proportion in width and height,improving convergence speed and accuracy.Experimental results on the SIXray dataset show that the algorithm achieves a 2% improvement in mAP50 and a 4.5% im-provement in mAP50:95,while maintaining a detection speed of 58 FPS.

关键词

深度学习/目标检测/YOLOv7/安检图像/注意力机制

Key words

deep learning/object detection/YOLOv7/security check image/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

朱雷,李国权,武瑞恒,黄正文,庞宇..基于WHIoU损失的安检图像违禁物品检测算法[J].重庆邮电大学学报(自然科学版),2025,37(1):46-56,11.

基金项目

国家自然科学基金项目(U21A20447) (U21A20447)

重庆市创新群体科学基金项目(cstc2020jcyj-cxttX0002)Natural Science Foundation of China(U21A20447) (cstc2020jcyj-cxttX0002)

Foundation for Innovative Research Groups of Natural Science Foundation of Chongqing(cstc2020jcyj-cxttX0002) (cstc2020jcyj-cxttX0002)

重庆邮电大学学报(自然科学版)

OA北大核心

1673-825X

访问量1
|
下载量0
段落导航相关论文