| 注册
首页|期刊导航|重庆邮电大学学报(自然科学版)|动态运动约束下的视频异常检测

动态运动约束下的视频异常检测

石瑞年 何强 王恒友 陈琳琳

重庆邮电大学学报(自然科学版)2025,Vol.37Issue(1):110-120,11.
重庆邮电大学学报(自然科学版)2025,Vol.37Issue(1):110-120,11.DOI:10.3979/j.issn.1673-825X.202405310133

动态运动约束下的视频异常检测

Dynamic motion constraints for video anomaly detection

石瑞年 1何强 1王恒友 1陈琳琳1

作者信息

  • 1. 北京建筑大学 理学院,北京 100044||北京建筑大学 大数据建模理论与技术研究所,北京 100044
  • 折叠

摘要

Abstract

The low accuracy of existing frame-prediction-based methods for video anomaly detection is often attributed to the learning of non-compact normal distributions,leading to strong generalization over anomalous events.To address this issue,a framework named dynamic motion constraints for video anomaly detection(DMC-VAD)is proposed.A spatiotemporal constraint module is introduced,enabling the model to apply spatiotemporal constraints on normal motion based on optical flow salient objects and motion information.A spatiotemporal alignment and fusion module is designed to suppress low-quali-ty feature responses in optical flow using a correction alignment mechanism,enhancing the global appearance and motion context constraints of normal frames.These dynamic constraints allow the model to learn a more compact normal distribu-tion,with anomalous frames deviating from these constraints and thus producing high errors.Optical flow reconstruction is incorporated to better train the motion encoder,and a combination of optical flow mean error and peak signal-to-noise ratio of video frames is used as the anomaly score.On the UCSD Ped2 and ShanghaiTech datasets,the proposed model achieves the best area under the curve(AUC)for the receiver operating characteristic(ROC):99.42% (+1.19% )and 74.50% (+0.28% ),respectively.On the CUHK Avenue dataset,it achieves comparable results with AMSTE(88.07% )while re-ducing the parameter count to only 16% of AMSTE.

关键词

视频异常检测/帧预测/无监督学习/动态约束/时空注意力

Key words

video anomaly detection/frame prediction/unsupervised learning/dynamic constraint/spatiotemporal attention

分类

信息技术与安全科学

引用本文复制引用

石瑞年,何强,王恒友,陈琳琳..动态运动约束下的视频异常检测[J].重庆邮电大学学报(自然科学版),2025,37(1):110-120,11.

基金项目

国家自然科学基金项目(62072024,12301581) (62072024,12301581)

北京市教育委员会科学研究计划项目(KM202210016002,KM202110016001)National Natural Science Foundation of China(62072024,12301581) (KM202210016002,KM202110016001)

R&D Program of Beijing Municipal Educa-tion Commission(KM202210016002,KM202110016001) (KM202210016002,KM202110016001)

重庆邮电大学学报(自然科学版)

OA北大核心

1673-825X

访问量1
|
下载量0
段落导航相关论文