| 注册
首页|期刊导航|电力系统及其自动化学报|基于深度强化学习的光伏主动配电网暂态电压控制

基于深度强化学习的光伏主动配电网暂态电压控制

宋晓喆 孙剑英 付小标 王长江 王鼎

电力系统及其自动化学报2025,Vol.37Issue(2):78-88,11.
电力系统及其自动化学报2025,Vol.37Issue(2):78-88,11.DOI:10.19635/j.cnki.csu-epsa.001469

基于深度强化学习的光伏主动配电网暂态电压控制

Transient Voltage Control of Photovoltaic Active Distribution Network Based on Deep Reinforcement Learning

宋晓喆 1孙剑英 2付小标 1王长江 2王鼎1

作者信息

  • 1. 国网吉林省电力有限公司,长春 130021
  • 2. 现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学),吉林 132012
  • 折叠

摘要

Abstract

To solve the problem of transient voltage drop after grid fault which is caused by the access of a large quantity of power electronic equipment,a transient voltage control strategy for photovoltaic(PV)active distribution network based on deep reinforcement learning is proposed.First,the inherent relationship between the reactive power output ca-pacity of a PV inverter and the AC-side voltage and active power under transient voltage drop is analyzed,and an explic-it expression for the short-term reactive power output from the PV inverter is established.Then,a deep deterministic policy gradient algorithm is further used to optimize the inner-loop control parameters of the PV power output,so that the PV inverter can adjust its active and reactive power output according to the grid voltage drop.To improve the re-sponse speed of transient reactive power,a flexible switching mechanism of transient/steady-state control strategy is de-signed,so that the PV inverter can quickly inject reactive power to support the grid voltage during the voltage drop by means of single closed-loop control.Finally,the effectiveness of the proposed control strategy is verified by the compari-son of numerical examples through simulations.

关键词

光伏发电/主动配电网/暂态电压/深度强化学习/电压支撑

Key words

photovoltaic(PV)power generation/active distribution network/transient voltage/deep reinforcement learning/voltage support

分类

信息技术与安全科学

引用本文复制引用

宋晓喆,孙剑英,付小标,王长江,王鼎..基于深度强化学习的光伏主动配电网暂态电压控制[J].电力系统及其自动化学报,2025,37(2):78-88,11.

基金项目

国网吉林省电力有限公司科技项目(SGJL0000DKJS2200369). (SGJL0000DKJS2200369)

电力系统及其自动化学报

OA北大核心

1003-8930

访问量0
|
下载量0
段落导航相关论文