| 注册
首页|期刊导航|电力系统自动化|基于多尺度图注意力网络的电力系统暂态稳定评估

基于多尺度图注意力网络的电力系统暂态稳定评估

傅太国屹 杜友田 吕昊 李宗翰 刘俊

电力系统自动化2025,Vol.49Issue(3):60-70,11.
电力系统自动化2025,Vol.49Issue(3):60-70,11.DOI:10.7500/AEPS20240318003

基于多尺度图注意力网络的电力系统暂态稳定评估

Transient Stability Assessment of Power Systems Based on Multi-scale Graph Attention Network

傅太国屹 1杜友田 1吕昊 1李宗翰 2刘俊3

作者信息

  • 1. 西安交通大学自动化科学与工程学院,陕西省西安市 710049
  • 2. 电网安全全国重点实验室(中国电力科学研究院有限公司),北京市 100192
  • 3. 西安交通大学电气工程学院,陕西省西安市 710049
  • 折叠

摘要

Abstract

Existing transient stability assessment methods based on graph deep learning consider the topological structure characteristics of power grids.However,the information transmission characteristics among multi-scale subgraphs in the topological structure of power grids are not effectively modeled,resulting in the insufficient capturing of the local and global dynamic coupling relationship of power grids by the stability judgment model,which reduces the stability judgment accuracy of the model under complex perturbations.Therefore,an assessment method for power angle transient stability integrating the information transmission process of multi-scale subgraphs is proposed.Firstly,a k-dimensional graph attention network is proposed and constructed,which regards the different-scale power grid topology subgraphs as the basic unit for feature extraction in graph deep learning.Then,adaptive weights are assigned to the feature aggregation through the attention mechanism to mine the characteristics between different fine-grained regions in the actual power grid.Finally,the feasibility and effectiveness of the proposed method are verified through the CEPRI-TAS-173 system.

关键词

暂态稳定评估/深度学习/多尺度子图/特征提取/图注意力网络

Key words

transient stability assessment/deep learning/multi-scale subgraph/feature extraction/graph attention network

引用本文复制引用

傅太国屹,杜友田,吕昊,李宗翰,刘俊..基于多尺度图注意力网络的电力系统暂态稳定评估[J].电力系统自动化,2025,49(3):60-70,11.

基金项目

国家重点研发计划资助项目(2021YFB2400800). This work is supported by National Key R&D Program of China(No.2021YFB2400800). (2021YFB2400800)

电力系统自动化

OA北大核心

1000-1026

访问量0
|
下载量0
段落导航相关论文