| 注册
首页|期刊导航|电力信息与通信技术|基于改进鲸鱼优化算法与残差修正的短期电量预测

基于改进鲸鱼优化算法与残差修正的短期电量预测

尼俊红 王畅

电力信息与通信技术2025,Vol.23Issue(2):18-27,10.
电力信息与通信技术2025,Vol.23Issue(2):18-27,10.DOI:10.16543/j.2095-641x.electric.power.ict.2025.02.03

基于改进鲸鱼优化算法与残差修正的短期电量预测

Short Term Electricity Prediction Based on Improved Whale Optimization Algorithm and Residual Correction

尼俊红 1王畅1

作者信息

  • 1. 华北电力大学 电子与通信工程系,河北省 保定市 071003
  • 折叠

摘要

Abstract

With the vigorous development of new clean energy sources and the ongoing reform of the electricity market,electricity prediction has become increasingly important in the production and operation of power companies.To achieve precise electricity prediction,this paper proposes a combined short-term electricity prediction model.The model integrates an improved whale optimization algorithm(IWOA)with variational mode decomposition(VMD)and extreme gradient boosting(XGBoost)-corrected autoregressive integrated moving average(ARIMA).Firstly,the whale optimization algorithm is improved by incorporating nonlinear factors,adaptive inertia weights,and perturbation control factors to enhance its solving and search capabilities for optimizing VMD parameters.Secondly,the VMD with optimized parameter selection is used to decompose the power data,reduce data volatility and facilitate the learning process of the prediction model.Finally,an ARIMA-XGBoost power prediction model is constructed for the decomposed components,and the final prediction values are obtained by reconstructing the prediction results.Experimental results show that the proposed model outperforms the comparison models in terms of prediction evaluation metrics.The symmetric mean absolute percentage error decreased by 2.46%and 1.55%compared to least squares support vector regression and random forest regression,respectively,validating the higher accuracy of the proposed model in electricity prediction.

关键词

鲸鱼优化算法/分解预测/组合模型/时间序列预测

Key words

whale optimization algorithm/decomposition prediction/combined model/time series prediction

分类

信息技术与安全科学

引用本文复制引用

尼俊红,王畅..基于改进鲸鱼优化算法与残差修正的短期电量预测[J].电力信息与通信技术,2025,23(2):18-27,10.

基金项目

国网福建省电力有限公司经济技术研究院科技项目(SGFJJY00GHJS2310071). (SGFJJY00GHJS2310071)

电力信息与通信技术

1672-4844

访问量0
|
下载量0
段落导航相关论文