| 注册
首页|期刊导航|中外公路|基于不确定性量化理论的寒区道路服役性能预测及评价研究

基于不确定性量化理论的寒区道路服役性能预测及评价研究

刘媛媛 司君岭 郑好 任道驹 樊少冰 权磊

中外公路2025,Vol.45Issue(1):60-66,7.
中外公路2025,Vol.45Issue(1):60-66,7.DOI:10.14048/j.issn.1671-2579.2025.01.007

基于不确定性量化理论的寒区道路服役性能预测及评价研究

Prediction and Evaluation of Road Service Performance in Cold Regions Based on Uncertainty Quantification Theory

刘媛媛 1司君岭 1郑好 1任道驹 1樊少冰 1权磊2

作者信息

  • 1. 哈尔滨工业大学 交通科学与工程学院,黑龙江 哈尔滨 150090
  • 2. 交通运输部公路科学研究院,北京市 100088
  • 折叠

摘要

Abstract

In cold regions,road service performance is influenced by various nonlinear dynamic factors under complex hydrothermal environments and freeze-thaw cycles.Traditional empirical and mechanical models exhibit significant limitations in comprehensively considering the impacts of complex environments and conducting quantitative analyses.This study proposed a method to predict and assess the service performance of constructed roads in cold regions.The method integrated deep neural networks with uncertainty quantification theory,addressing the inadequacies of existing models in adapting to complex environments and analyzing multiple influencing factors.By utilizing data from Montana road sections in the LTPP database,the study employed deep neural networks to predict the international roughness index(IIRI).The Morris one-at-a-time method was used to screen key influencing factors,and sensitivity analysis was conducted using the Sobol index to identify the primary factors affecting road service performance.The results indicate that road age,traffic volume,and freezing index are critical factors influencing road service performance,followed by temperature and wind speed,while annual precipitation,solar radiation,and humidity have relatively minor impacts.These findings highlight the significance of screening key factors and conducting sensitivity analyses to discern the primary and secondary factors influencing road service performance in the complex environments of cold regions.The proposed research framework effectively addresses the limitations of traditional evaluation models in adapting to complex environments and analyzing influencing factors comprehensively.It provides theoretical support and practical guidance for accurate prediction and scientific evaluation of road service performance in cold regions.

关键词

寒区/道路服役性能/深度神经网络/不确定性量化/气候变化

Key words

cold region/road service performance/deep neural network/uncertainty quantification/climate change

分类

交通工程

引用本文复制引用

刘媛媛,司君岭,郑好,任道驹,樊少冰,权磊..基于不确定性量化理论的寒区道路服役性能预测及评价研究[J].中外公路,2025,45(1):60-66,7.

基金项目

国家重点研发计划项目(编号:2023YFB2604800) (编号:2023YFB2604800)

中外公路

1671-2579

访问量1
|
下载量0
段落导航相关论文