| 注册
首页|期刊导航|含能材料|基于音频信号的含能材料撞击感度机器学习识别

基于音频信号的含能材料撞击感度机器学习识别

张炳儒 邓川 代晓淦 李明 文玉史 郭峰 于绍钧 纪春亮 林聪妹 郝利霄 韩勇

含能材料2025,Vol.33Issue(2):136-147,12.
含能材料2025,Vol.33Issue(2):136-147,12.DOI:10.11943/CJEM2024300

基于音频信号的含能材料撞击感度机器学习识别

Machine Learning Recognition of Impact Sensitivity of Energetic Materials Based on Acoustic Signals

张炳儒 1邓川 1代晓淦 1李明 1文玉史 1郭峰 2于绍钧 1纪春亮 3林聪妹 1郝利霄 1韩勇1

作者信息

  • 1. 中国工程物理研究院化工材料研究所,四川 绵阳 621999
  • 2. 聊城大学物理科学与信息工程学院,山东 聊城 252059
  • 3. 北京理工大学机电学院,北京 100081
  • 折叠

摘要

Abstract

To improve the accuracy and objectivity of explosives’impact sensitivity testing,machine learning methods were ap-plied in the intelligent recognition of explosives’impact response acoustic signals.Experiments on mixed explosives were con-ducted using a drop-weight impact sensitivity test device,with an audio acquisition system synchronously capturing acoustic sig-nals during the impact process.One-dimensional time domain and frequency domain features,such as maximum value and bandwidth,were extracted.Short-Time Fourier Transform(STFT)was employed to convert audio data into frequency spectro-grams.Data augmentation for one-dimensional data was performed using a Conditional Generative Adversarial Network(cGAN),while a Deep Convolutional Generative Adversarial Network(DCGAN)was applied to enhance spectrogram data.Multiple machine learning models were employed for explosion classification,including Random Forest(RF),eXtreme Gradient Boosting(XGBoost),Back-propagation Neural Network(BPNN),Support Vector Machine(SVM),k-means clustering,Convo-lutional Neural Network(CNN),and Vision Transformer(ViT).Results demonstrate that RF,XGBoost,BPNN,and SVM achieve accuracy rates exceeding 99.5%on the real dataset and achieve 100%on the cGAN-augmented dataset.In contrast,k-means clustering initially reaches an accuracy of 98.5%on the real dataset,but accuracy shows a trend of increase followed by decline on augmented data.CNN and ViT achieve accuracies of 98.1%and 98.4%on the real dataset,respectively,and im-proved to 98.4%and 98.9%on augmented data.However,their accuracy still exhibited potential for improvement due to the constraints of small sample sizes and minor overfitting issues.The proposed machine learning-based intelligent recognition meth-od for explosives’impact sensitivity in this study achieved a high level of accuracy,demonstrating its reliability and practicality in the task of detecting explosive sound signals.At the same time,it effectively mitigates the subjectivity and inefficiency associat-ed with traditional manual recognition methods,providing a reliable technical solution for the safety use of explosives.

关键词

撞击感度/机器学习/深度学习/数据增强/卷积神经网络/声信号识别

Key words

impact sensitivity/machine learning/deep learning/data augmentation/convolutional neural network/acoustic signal recognition

分类

军事科技

引用本文复制引用

张炳儒,邓川,代晓淦,李明,文玉史,郭峰,于绍钧,纪春亮,林聪妹,郝利霄,韩勇..基于音频信号的含能材料撞击感度机器学习识别[J].含能材料,2025,33(2):136-147,12.

基金项目

国家自然基金面上项目(12372342) (12372342)

院长基金自强项目(YZJJZQ2023008) Grant Support:National Natural Science Foundation of China(No.12372342) (YZJJZQ2023008)

Presidential Foundation of CAEP(YZJJZQ2023008) (YZJJZQ2023008)

含能材料

OA北大核心

1006-9941

访问量0
|
下载量0
段落导航相关论文