| 注册
首页|期刊导航|红外技术|低照度图像增强算法研究综述

低照度图像增强算法研究综述

吕宗旺 牛贺杰 孙福艳 甄彤

红外技术2025,Vol.47Issue(2):165-178,14.
红外技术2025,Vol.47Issue(2):165-178,14.

低照度图像增强算法研究综述

Review of Research on Low-Light Image Enhancement Algorithms

吕宗旺 1牛贺杰 1孙福艳 1甄彤1

作者信息

  • 1. 河南工业大学 信息科学与工程学院,河南 郑州 450001||粮食信息处理与控制教育部重点实验室,河南 郑州 450001
  • 折叠

摘要

Abstract

Low-light image enhancement is an important problem in the field of image processing.The rapid development of deep learning technology provides a new solution for low-light image enhancement and has broad application prospects.First,the current research status and challenges in the field of low-light image enhancement are comprehensively analyzed,and traditional methods and their advantages and disadvantages are introduced.Second,deep learning-based low-light image enhancement algorithms are classified into five categories according to their different learning strategies,and the principles,network structures,and problem-solving capabilities of these algorithms are explained in detail.Third,representative deep learning-based image enhancement algorithms from the last six years are compared and analyzed in chronological order.Fourth,the current mainstream datasets and evaluation indexes are summarized,and the deep learning algorithms are tested and evaluated in terms of perceived similarity and algorithm performance.Finally,directions for improvement and future research in the field of low-light image enhancement are discussed and suggested.

关键词

低照度图像/图像增强/深度学习/图像处理/低照度数据集

Key words

low-light images/image enhancement/deep learning/image processing/low-light dataset

分类

信息技术与安全科学

引用本文复制引用

吕宗旺,牛贺杰,孙福艳,甄彤..低照度图像增强算法研究综述[J].红外技术,2025,47(2):165-178,14.

基金项目

国家重点研发计划项目(2022YFD2100202). (2022YFD2100202)

红外技术

OA北大核心

1001-8891

访问量0
|
下载量0
段落导航相关论文