| 注册
首页|期刊导航|机械科学与技术|改进YOLOv8算法的钢材表面缺陷检测

改进YOLOv8算法的钢材表面缺陷检测

王孟宇 刘志强

机械科学与技术2025,Vol.44Issue(1):19-29,11.
机械科学与技术2025,Vol.44Issue(1):19-29,11.DOI:10.13433/j.cnki.1003-8728.20240113

改进YOLOv8算法的钢材表面缺陷检测

Detection of Steel Surface Defect Using Improved YOLOv8 Algorithm

王孟宇 1刘志强2

作者信息

  • 1. 长沙理工大学汽车与机械工程学院,长沙 410114
  • 2. 长沙理工大学汽车与机械工程学院,长沙 410114||长沙理工大学卓越工程师学院,长沙 410114
  • 折叠

摘要

Abstract

A modified algorithm for steel surface defect detection,named ADP-YOLOv8,is proposed to address the issues of uneven scale of steel surface defects,poor multi-scale feature processing ability of existing detection algorithms,and the need to improve accuracy.Firstly,an adaptive weighted downsampling(ADSConv)module is proposed,which enhances the detector's adaptability to different types of defects by weighting and combining different downsampling feature maps.Then,by improving the C2F module in the feature extraction network,the extraction of features from the scalable receptive field at the higher level of the network is strengthened.Finally,the introduction of the programmable gradient information(PGI)module gradually integrates features of different scales through its multi-level auxiliary information components.The average accuracy of the present method is 79.3%,which is 3.5%higher than the benchmark model.The detection speed is 163.2 frame/s.Comparing with the other mainstream object detection algorithms,the improved detector has more advantages in performance,demonstrating a good balance in detection accuracy,speed and model volume.

关键词

表面缺陷检测/自适应权重/感受野/可编程梯度信息

Key words

surface defect detection/adaptive weight/receptive field/programmable gradient information

分类

信息技术与安全科学

引用本文复制引用

王孟宇,刘志强..改进YOLOv8算法的钢材表面缺陷检测[J].机械科学与技术,2025,44(1):19-29,11.

机械科学与技术

OA北大核心

1003-8728

访问量0
|
下载量0
段落导航相关论文