| 注册
首页|期刊导航|南京信息工程大学学报|基于改进YOLOv8的果园复杂环境下苹果检测模型研究

基于改进YOLOv8的果园复杂环境下苹果检测模型研究

岳有军 漆潇 赵辉 王红君

南京信息工程大学学报2025,Vol.17Issue(1):31-41,11.
南京信息工程大学学报2025,Vol.17Issue(1):31-41,11.DOI:10.13878/j.cnki.jnuist.20240410002

基于改进YOLOv8的果园复杂环境下苹果检测模型研究

Apple detection in complex orchard environments based on improved YOLOv8

岳有军 1漆潇 1赵辉 2王红君2

作者信息

  • 1. 天津理工大学 电气工程与自动化学院,天津,300384
  • 2. 天津理工大学 天津市复杂系统控制理论及应用重点实验室,天津,300384
  • 折叠

摘要

Abstract

To enable harvesting robots to quickly and accurately detect apples of varying maturity levels in complex orchard environments(including different lighting conditions,leaf occlusion,dense apple clusters,and ultra-long-range vision scenarios),we propose an apple detection model based on improved YOLOv8.First,the Efficient Multi-scale Attention(EMA)module is integrated into the YOLOv8 to enable the model to focus on the region of interest for fruit detection and suppress general feature information such as background and foliage occlusion,thus improving the detection accuracy of occluded fruits.Second,the original C2f module is replaced by a more efficient three-branch Dilation-Wise Residual(DWR)module for feature extraction,which enhances the detection capability for small objects through multi-scale feature fusion.Simultaneously,inspired by the DAMO-YOLO concept,the original YOLOv8 neck is reconstructed to achieve efficient fusion of high-level semantics and low-level spatial features.Finally,the model is optimized using the Inner-SIoU loss function to improve the recognition accuracy.In complex orchard environments with apples as the detection target,experimental results show that the proposed algorithm achieves Precision,Recall,mAP0.5,mAP0.5-0.95,and F1 score of 86.1%,89.2%,94.0%,64.4%,and 87.6%,respectively on the test set.The improved algorithm outperforms the original model in most indicators,and demon-strates excellent robustness through comparative experiments with varying fruit counts,offering practical value for applications in addressing the precise identification challenge faced by fruit harvesting robots in complex environ-ments.

关键词

模式识别/深度学习/目标检测/YOLOv8

Key words

pattern recognition/deep learning/object detection/YOLOv8

分类

信息技术与安全科学

引用本文复制引用

岳有军,漆潇,赵辉,王红君..基于改进YOLOv8的果园复杂环境下苹果检测模型研究[J].南京信息工程大学学报,2025,17(1):31-41,11.

基金项目

天津市科技支撑计划(19YFZCSN00360,18YFZCNC01120) (19YFZCSN00360,18YFZCNC01120)

南京信息工程大学学报

OA北大核心

1674-7070

访问量0
|
下载量0
段落导航相关论文