| 注册
首页|期刊导航|南京信息工程大学学报|基于多要素3D特征提取的短期定量降水预报技术研究

基于多要素3D特征提取的短期定量降水预报技术研究

熊文睿 张恒德 陆振宇 郭云谦

南京信息工程大学学报2025,Vol.17Issue(1):125-137,13.
南京信息工程大学学报2025,Vol.17Issue(1):125-137,13.DOI:10.13878/j.cnki.jnuist.20231222004

基于多要素3D特征提取的短期定量降水预报技术研究

Short-term quantitative precipitation forecasting based on multi-factor 3D feature extraction

熊文睿 1张恒德 2陆振宇 1郭云谦2

作者信息

  • 1. 南京信息工程大学 人工智能学院,南京,210044
  • 2. 国家气象中心,北京,100081
  • 折叠

摘要

Abstract

Traditional Numerical Weather Prediction(NWP)models suffer from inherent biases in Quantitative Precipitation Forecasting(QPF)tasks due to limited spatial resolution,incomplete physical parameterization schemes,and poor generalization capabilities.Deep learning neural networks,with their robust nonlinear fitting capa-bilities,autonomous learning of task-specific features,and high generalization,hold the potential to address these is-sues and improve the current state of NWP.Here,we propose a novel short-term QPF approach based on multi-factor 3D feature extraction.Leveraging high-resolution ECMWF HRES(EC-Hres)model forecasting data provided by the European Centre for Medium Range Weather Forecasts(ECMWF),we construct a 3D-QPF semantic segmentation model.This model employs a coupled framework of classification and regression to capture the 3D spatial features of various precipitation-related element data,establishing a nonlinear relationship with actual precipitation data.Fur-thermore,we incorporate the PR(Precision-Recall)loss function to further enhance the model's predictive perform-ance,particularly for skewed data.Experimental results show that the 3D-QPF model achieves a steady increase in accuracy score for daily cumulative precipitation forecast,not only at the light rain threshold(0.1 mm/(24 h))but also significantly at the rainstorm threshold(50 mm/(24 h)),with a maximum improvement of 15.8%in TS(Threat Score)compared to that of EC-Hres and a reduction in RMSE(Root Mean Square Error)by 18.71%.Upon extended validation,the 3D-QPF model outperforms EC-Hres,China Meteorological Administration Global Model(CMA-GFS)forecasting,and classic network models such as 2D-Unet and 3D-Unet,demonstrating effective prediction correction.Notably,the model's optimization performance remains relatively stable even when the forecast lead time is extended to 72 hours.

关键词

定量降水预报/语义分割/偏态数据/耦合方式

Key words

quantitative precipitation forecasting/semantic segmentation/skewed data/coupled approach

分类

天文与地球科学

引用本文复制引用

熊文睿,张恒德,陆振宇,郭云谦..基于多要素3D特征提取的短期定量降水预报技术研究[J].南京信息工程大学学报,2025,17(1):125-137,13.

基金项目

新疆维吾尔自治区重点研发任务专项(2022B03027) (2022B03027)

国家重点研发计划(2021YFC3000903) (2021YFC3000903)

国家自然科学基金重点项目(U20B2061) (U20B2061)

中国气象局创新发展项目(CXFZ2023J001) (CXFZ2023J001)

南京信息工程大学学报

OA北大核心

1674-7070

访问量0
|
下载量0
段落导航相关论文