| 注册
首页|期刊导航|能源工程|耦合垂直风廓线的机器学习风速订正模型

耦合垂直风廓线的机器学习风速订正模型

张流杰 王强 明轩萱 杨树林 叶时彤 王凯 罗坤 樊建人

能源工程2025,Vol.45Issue(1):48-54,7.
能源工程2025,Vol.45Issue(1):48-54,7.DOI:10.16189/j.nygc.2025.01.007

耦合垂直风廓线的机器学习风速订正模型

Wind speed correction model based on machine learning coupled with vertical distribution of wind speed

张流杰 1王强 1明轩萱 1杨树林 1叶时彤 1王凯 1罗坤 1樊建人1

作者信息

  • 1. 浙江大学能源高效清洁利用全国重点实验室,浙江 杭州 310027
  • 折叠

摘要

Abstract

In this study,a method is proposed for training a machine learning model for wind speed correction under the constraint of vertical wind speed distribution patterns(coupled model)to improve model generalization performance.The CNN_LSTM model is adopted in the experiment for the machine learning model.The vertical wind speed distribution pattern refers to the exponential distribution pattern where certain rules are satisfied by average wind speeds at different heights over a period of time.This method combines physics and data to enhance correction effectiveness.It is indicated by the research that,compared to using measured wind data as a baseline,the results from coupled model are closer to the measured data.The root-mean-square error of the coupled model is up to 1.74 m/s lower than that of WRF simulated wind speed and up to 0.46 m/s lower than that of CNN_LSTM.Two different correction methods can increase the correlation coefficient from 0.65 to 0.9,and the correlation coefficient of the coupled model can be increased to about 0.92.The method proposed in this study,where the vertical wind speed distribution pattern is coupled with machine learning model training,effectively improves the generalization capability of the correction model.

关键词

风速订正/机器学习/垂直风廓线/耦合模型

Key words

wind speed correction/machine learning correction model/vertical distribution of wind speed/coupling model

分类

能源科技

引用本文复制引用

张流杰,王强,明轩萱,杨树林,叶时彤,王凯,罗坤,樊建人..耦合垂直风廓线的机器学习风速订正模型[J].能源工程,2025,45(1):48-54,7.

基金项目

国家自然科学基金项目(52206281) (52206281)

浙江省自然科学基金资助项目(LY24E060002). (LY24E060002)

能源工程

1004-3950

访问量0
|
下载量0
段落导航相关论文