| 注册
首页|期刊导航|无线电工程|基于通道剪枝的YOLOv8n印刷电路板缺陷检测

基于通道剪枝的YOLOv8n印刷电路板缺陷检测

杨慧聪 陈慈发 张上

无线电工程2025,Vol.55Issue(2):271-280,10.
无线电工程2025,Vol.55Issue(2):271-280,10.DOI:10.3969/j.issn.1003-3106.2025.02.006

基于通道剪枝的YOLOv8n印刷电路板缺陷检测

PCB Defect Detection Using YOLOv8n Based on Channel Pruning

杨慧聪 1陈慈发 2张上1

作者信息

  • 1. 三峡大学 水电工程智能视觉监测湖北省重点实验室,湖北 宜昌 443002||三峡大学 湖北省建筑质量检测装备工程技术研究中心,湖北 宜昌 443002||三峡大学 计算机与信息学院,湖北 宜昌 443002
  • 2. 三峡大学 湖北省建筑质量检测装备工程技术研究中心,湖北 宜昌 443002||三峡大学 计算机与信息学院,湖北 宜昌 443002||荆楚理工学院 大数据研究中心,湖北 荆门 448000
  • 折叠

摘要

Abstract

Aiming at the problem of large model size and large number of parameters in the surface defect detection of Printed Circuit Board(PCB),a PCB defect detection algorithm using lightweight YOLOv8n network based on channel pruning is proposed.In order to effectively improve the feature extraction of small target defects of PCB,RepViT is used as the feature extraction network;in order to improve the network's attention to small targets and reduce the repetition of gradient information in the neural network reasoning process,the convolution module of the neck network is replaced by Rep-Net with Cross-Stage Partial CSP and ELAN(RepNCSPELAN4);in order to reduce the distortion of the detection frame when defects overlap,Focaler-MPDIoU is used to replace Complete Intersection over Union(CIoU)in the prediction part;the model of the fusion improvement method is pruned by the Layer Adaptive Magnitude based Pruning(LAMP)method to remove redundant gradient information and weights in the model,reduce the number of parameters and floating-point operations,and compress the model volume.Experimental results show that in the PCB public data set,after LAMP score based pruning,the algorithm has a 60.8%reduction in parameters,a 50.8%reduction in model size,a 48.8%reduction in computational complexity,and a 3.8%increase in mean Average Precision(mAP)compared to YOLOv8n.While improving the accuracy,the computational complexity,parameter quantity and model size are all lower than those of the original model,meeting the use requirements of some low-configuration devices.

关键词

印刷电路板缺陷/小目标/模型剪枝/轻量化网络/损失函数

Key words

PCB defects/small targets/model pruning/lightweight network/loss function

分类

信息技术与安全科学

引用本文复制引用

杨慧聪,陈慈发,张上..基于通道剪枝的YOLOv8n印刷电路板缺陷检测[J].无线电工程,2025,55(2):271-280,10.

基金项目

湖北省大学生创新创业训练计划(202311075046) (202311075046)

国家级大学生创新创业训练计划(202111075012,202011075013)Hubei Province Innovation and Entrepreneurship Training Program for College Students(202311075046) (202111075012,202011075013)

National Innovation and Entre-preneurship Training Program for College Students(202111075012,202011075013) (202111075012,202011075013)

无线电工程

1003-3106

访问量0
|
下载量0
段落导航相关论文