| 注册
首页|期刊导航|无线电工程|基于卷积自适应降噪网络的自动调制识别方法

基于卷积自适应降噪网络的自动调制识别方法

陈昊 郭文普 康凯 施昊

无线电工程2025,Vol.55Issue(2):291-297,7.
无线电工程2025,Vol.55Issue(2):291-297,7.DOI:10.3969/j.issn.1003-3106.2025.02.008

基于卷积自适应降噪网络的自动调制识别方法

Automatic Modulation Recognition Method Based on Convolutional Adaptive Denoising Network

陈昊 1郭文普 1康凯 1施昊1

作者信息

  • 1. 火箭军工程大学 作战保障学院,陕西 西安 710025
  • 折叠

摘要

Abstract

To deal with the problem of low recognition accuracy of Automatic Modulation Recognition(AMR)methods under low Signal to Noise Ratio(SNR)conditions,an AMR method is proposed based on convolutional Adaptive Noise Reduction(ANR).In this method,phase transformation is used to reduce the impact of phase shift on modulation recognition;Convolutional Neural Network(CNN)and Gated Recurrent Unit(GRU)are used to extract spatial and temporal features of signals,respectively;an ANR Module is added after CNN to perform adaptive soft thresholding on convolutional features under different SNR conditions to improve network robustness.The simulation results on the benchmark dataset RML2016.10a show that the proposed model achieves better recognition accuracy compared to other network models when the SNR is greater than-8 dB.

关键词

自动调制识别/卷积神经网络/自适应降噪模块/软阈值

Key words

AMR/CNN/ANR module/soft thresholding

分类

信息技术与安全科学

引用本文复制引用

陈昊,郭文普,康凯,施昊..基于卷积自适应降噪网络的自动调制识别方法[J].无线电工程,2025,55(2):291-297,7.

无线电工程

1003-3106

访问量1
|
下载量0
段落导航相关论文