| 注册

基于改进SVM的心音分类研究

殷丽凤 赵敏

云南民族大学学报(自然科学版)2025,Vol.34Issue(1):77-83,7.
云南民族大学学报(自然科学版)2025,Vol.34Issue(1):77-83,7.DOI:10.3969/j.issn.1672-8513.2025.01.010

基于改进SVM的心音分类研究

Research on heart sound classification based on improved support vector machine

殷丽凤 1赵敏1

作者信息

  • 1. 大连交通大学 软件学院,辽宁 大连 116028
  • 折叠

摘要

Abstract

Cardiovascular disease has always been a major factor threatening human life and health.If the patho-logical information contained in human heart sound signals can be accurately classified,it will be very helpful for disease diagnosis and control.Firstly,particle swarm optimization algorithm is used to optimize the traditional sup-port vector machine algorithm,and a binary classifier model is proposed.The primary classifier is composed of three algorithms Adaboost,RF and PSOA-SVM based on Stacking method,and the secondary classifier is LR model;Secondly,the improved Grey Wolf Optimization Algorithm is used to find the optimal parameter combina-tion of support vector machine to get a new classifier model;Finally,the heart sound data set is used to analyze the two classifier models.The experiments show that the two models show excellent classification results.

关键词

支持向量机/PSO/GWO/Stacking/心音分类

Key words

support vector machine/PSO/GWO/stacking/heart sound classification

分类

信息技术与安全科学

引用本文复制引用

殷丽凤,赵敏..基于改进SVM的心音分类研究[J].云南民族大学学报(自然科学版),2025,34(1):77-83,7.

基金项目

国家自然科学基金(61771087). (61771087)

云南民族大学学报(自然科学版)

1672-8513

访问量0
|
下载量0
段落导航相关论文