| 注册
首页|期刊导航|岩土力学|基于人工神经网络的黄土含水率光纤被动感测技术研究

基于人工神经网络的黄土含水率光纤被动感测技术研究

郭旭辉 朱鸿鹄 吴冰 高宇新 胡乐乐 曹鼎峰

岩土力学2025,Vol.46Issue(2):653-664,12.
岩土力学2025,Vol.46Issue(2):653-664,12.DOI:10.16285/j.rsm.2024.0451

基于人工神经网络的黄土含水率光纤被动感测技术研究

Fiber optic passive sensing of loess moisture content based on artificial neural network

郭旭辉 1朱鸿鹄 2吴冰 1高宇新 1胡乐乐 1曹鼎峰3

作者信息

  • 1. 南京大学 地球科学与工程学院,江苏 南京 210023
  • 2. 南京大学 地球科学与工程学院,江苏 南京 210023||江苏省大地感知与控灾工程研究中心,江苏 南京 210023
  • 3. 中山大学 土木工程学院,广东 珠海 519082
  • 折叠

摘要

Abstract

Accurate monitoring of the spatiotemporal distribution of soil moisture content is crucial for geotechnical engineering monitoring and geological disaster prevention and control.Given the limitations of passive distributed temperature sensing(PDTS)technology in monitoring soil moisture content,the Spearman correlation coefficient method was introduced to quantitatively analyze the correlations among radiation,air temperature,warming slope,soil temperature,salinity,and moisture content.By incorporating the back propagation(BP)neural network,a passive sensing model for soil moisture is proposed.The model considers the comprehensive effects of water,heat,and salt and can replace the complex numerical iterative algorithm in traditional PDTS technology.This model not only expands the application scope of PDTS technology,but also significantly improves the accuracy of moisture content prediction.Long-term observations on the Loess Plateau in China verified the effectiveness of the proposed model using in-situ data.The analysis results indicate a strong positive correlation between loess moisture content and salinity,temperature,which can complement each other in depth.The input variables maintain a shallow soil moisture content with a root mean square error below 0.006 8 m3·m-3.The model's errors mainly arise from rainfall and soil freeze-thaw processes,which tend to be smaller in winter and larger in summer.This study provides important theoretical support and practical reference for applying PDTS technology to soil moisture content monitoring and reveals the water-salt migration mechanism in loess.

关键词

被动分布式温度传感(PDTS)/人工神经网络/含水率/水热盐运移/光纤布拉格光栅

Key words

passive distributed temperature sensing/artificial neural network/moisture content/hydrothermal-saline transport/fiber Bragg grating

分类

建筑与水利

引用本文复制引用

郭旭辉,朱鸿鹄,吴冰,高宇新,胡乐乐,曹鼎峰..基于人工神经网络的黄土含水率光纤被动感测技术研究[J].岩土力学,2025,46(2):653-664,12.

基金项目

国家重点研发计划课题(No.2023YFF1303501) (No.2023YFF1303501)

国家杰出青年科学基金(No.42225702) (No.42225702)

国家自然科学基金面上项目(No.42077235). This work was supported by the National Key Research and Development Program of China(2023YFF1303501),the National Science Fund for Distinguished Young Scholars of China(42225702)and the General Program of National Natural Science Foundation of China(42077235). (No.42077235)

岩土力学

OA北大核心

1000-7598

访问量0
|
下载量0
段落导航相关论文