| 注册
首页|期刊导航|自动化学报|基于模型预测控制的子母式无人机编队飞行控制方法

基于模型预测控制的子母式无人机编队飞行控制方法

李云鹏 张立宪 韩岳江 蔡博 张宇轩 肖广洲

自动化学报2025,Vol.51Issue(2):312-326,15.
自动化学报2025,Vol.51Issue(2):312-326,15.DOI:10.16383/j.aas.c240405

基于模型预测控制的子母式无人机编队飞行控制方法

Model Predictive Control-based Formation Flight Control Method for Composite UAVs

李云鹏 1张立宪 1韩岳江 1蔡博 1张宇轩 1肖广洲1

作者信息

  • 1. 哈尔滨工业大学航天学院 哈尔滨 150001
  • 折叠

摘要

Abstract

Composite unmanned aerial vehicles(UAVs)typically refer to a class of novel aircraft,each of which in-volves a carrier UAV deploying and airdropping multiple parasite UAVs for collaborative operations.Compared to traditional UAVs and UAV swarms,composite UAVs offer significant advantages in terms of extended range and enhanced spatial accessibility,garnering widespread attention.First,the dynamic model of the composite UAV is established for the problem of attitude stabilization control for the carrier UAV and trajectory tracking control for the parasite UAVs during formation flight tasks.On this basis,the flight control method based on multi-equilibri-um switched model predictive control,as well as the trajectory tracking control method based on model predictive control with the polytopic model uncertainty,are designed to achieve a stable and safe formation flight of the com-posite UAV.Simulation results indicate that the proposed methods achieve the anticipated formation flight,demon-strating satisfying stability and robustness.

关键词

子母式无人机/模型预测控制/切换控制/编队控制

Key words

Composite unmanned aerial vehicles(UAVs)/model predictive control/switched control/formation control

引用本文复制引用

李云鹏,张立宪,韩岳江,蔡博,张宇轩,肖广洲..基于模型预测控制的子母式无人机编队飞行控制方法[J].自动化学报,2025,51(2):312-326,15.

基金项目

国家自然科学基金(62225305,12072088),中央高校基本科研业务费专项基金(HIT.OCEF.2022047,HIT.BRET.2022004,HIT DZIJ.2023049),基础科研项目(2022603C016),机器人与系统国家重点实验室(HIT),黑龙江头雁团队资助Supported by National Natural Science Foundation of China(62225305,12072088),the Fundamental Research Funds for the Central Universities,China(HIT.OCEF.2022047,HIT.BRET.2022004,HITDZIJ.2023049),the Basic Research Project(2022603C016),State Key Laboratory of Robotics and System(HIT),and the Heilongjiang Touyan Team (62225305,12072088)

自动化学报

OA北大核心

0254-4156

访问量1
|
下载量0
段落导航相关论文