| 注册
首页|期刊导航|中国防汛抗旱|基于集成学习LightGBM模型的巢湖水位预测研究

基于集成学习LightGBM模型的巢湖水位预测研究

齐鹏云 甘敏 赖锡军

中国防汛抗旱2025,Vol.35Issue(2):81-86,6.
中国防汛抗旱2025,Vol.35Issue(2):81-86,6.DOI:10.16867/j.issn.1673-9264.2024064

基于集成学习LightGBM模型的巢湖水位预测研究

Study on the water level forecast in Chaohu Lake using the ensemble learning LightGBM model

齐鹏云 1甘敏 2赖锡军2

作者信息

  • 1. 安徽省巢湖管理局湖泊生态环境研究院,合肥 230601
  • 2. 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京 210008
  • 折叠

摘要

Abstract

Accurately predicting and forecasting the changes in lake water levels is of great significance for regional water security.In order to achieve rapid and accurate prediction of lake water level fluctuations driven by basinal inflow,this paper takes Chaohu Lake as an example and adopts the ensemble learning LightGBM algorithm to construct a daily average water level prediction model for Chaohu Lake driven by precipitation data.The model takes the daily average rainfall of the basin in one historical week and the historical daily average water level of the simulated hydrological station in one week as input,and is trained on data from 2019 to 2022 with 2023 for validation.The validation and sensitivity analysis results show that the constructed water level prediction model based on LightGBM has good robustness and accuracy,with root mean square errors of 0.03 m and 0.04 m for Zhongmiao and Chaohu sluice stations water level predictions,and Nash efficiency coefficients of 0.98 and 0.94 respectively.This model provides a reference for rapid prediction and analysis of lake water levels.

关键词

集成学习/LightGBM/湖泊水位/巢湖/水位预测

Key words

ensemdble learning/LightGBM/lake water level/Chaohu Lake/water level forecasting

分类

天文与地球科学

引用本文复制引用

齐鹏云,甘敏,赖锡军..基于集成学习LightGBM模型的巢湖水位预测研究[J].中国防汛抗旱,2025,35(2):81-86,6.

基金项目

国家自然科学基金(42171012). (42171012)

中国防汛抗旱

1673-9264

访问量0
|
下载量0
段落导航相关论文