| 注册
首页|期刊导航|重庆大学学报|基于机器学习的软件缺陷预测研究

基于机器学习的软件缺陷预测研究

喻皓 张莹 李倩 姜立标 尚云鹏

重庆大学学报2025,Vol.48Issue(2):10-21,12.
重庆大学学报2025,Vol.48Issue(2):10-21,12.DOI:10.11835/j.issn.1000-582X.2025.02.002

基于机器学习的软件缺陷预测研究

Research on software defect prediction based on machine learning

喻皓 1张莹 2李倩 3姜立标 4尚云鹏5

作者信息

  • 1. 广汽埃安新能源汽车股份有限公司研发中心,广州 511400
  • 2. 星河智联汽车科技有限公司,广州 510335
  • 3. 工业和信息化部电子第五研究所,广州 510463
  • 4. 广州城市理工学院 机械工程学院与机器人学院,广州 510800||华南理工大学 机械与汽车工程学院,广州 510641
  • 5. 广州城市理工学院 工程研究院,广州 510800
  • 折叠

摘要

Abstract

With the gradual penetration of machine learning technology into various fields,software testing in the software development process is very important.Software defect prediction faces class imbalance problem and accuracy issue.This paper proposes a supervised learning-based software prediction method for solving these two core problems.The method adopts sample balancing technique,combined with synthetic minority over-sampling technique(SMOTE)and edited nearest neighbor(ENN)algorithm,to test local weight learning(LWL),J48,C4.8,random forest,Bayes net(BN),multilayer feedforward neural network(MFNN),supported vector machine(SVM),and naive Bayes key(NB-K).These algorithms are applied to three different datasets(KK1,KK3 and PK2)in the NASA database and their effects are compared and analyzed in detail.The results show that the random forest model combining SMOTE and ENN exhibits high efficiency and avoiding overfitting in dealing with class imbalance problems,which provides an effective way to solve the problem in software defect prediction.

关键词

软件缺陷预测/机器学习/类不平衡/XGBoost/随机森林

Key words

software defect prediction/machine learning/class imbalance/XGBoost/random forest

分类

信息技术与安全科学

引用本文复制引用

喻皓,张莹,李倩,姜立标,尚云鹏..基于机器学习的软件缺陷预测研究[J].重庆大学学报,2025,48(2):10-21,12.

基金项目

国家自然科学基金(61602345).Supported by National Natural Science Foundation of China(61602345). (61602345)

重庆大学学报

OA北大核心

1000-582X

访问量0
|
下载量0
段落导航相关论文