| 注册
首页|期刊导航|地理空间信息|利用扩展词嵌入BERT的地表水系地理命名实体抽取模型

利用扩展词嵌入BERT的地表水系地理命名实体抽取模型

郑旭野 陈涛 周婧娟

地理空间信息2025,Vol.23Issue(2):1-6,6.
地理空间信息2025,Vol.23Issue(2):1-6,6.DOI:10.3969/j.issn.1672-4623.2025.02.001

利用扩展词嵌入BERT的地表水系地理命名实体抽取模型

Geographical Named Entity Extraction Model of Surface Water System Based on Expanded Word Embedding BERT

郑旭野 1陈涛 2周婧娟2

作者信息

  • 1. 武汉大学 测绘学院,湖北 武汉 430079
  • 2. 湖北省测绘成果档案馆,湖北 武汉 430014
  • 折叠

摘要

Abstract

One of the important tasks in constructing a geographical knowledge graph is the recognition of geographical named entities.Chinese text has flexible vocabulary structures and unclear word boundaries,making the recognition of geographical named entities in Chinese text a chal-lenging research area,especially due to the scarcity of annotated datasets in the geographical domain.To address the task of geographical named entities recognition in massive network texts containing geographical information,we established a dataset of surface water system based on Wikipedia data and a domain dictionary,and proposed a vocabulary enhancement method based on expanded word embedding to enhance the vo-cabulary of BERT pre-training model.We constructed EXPBERT-BiGRU-CRF named entity recognition model by combining BiGRU and CRF networks for context feature recognition and learning.Experimental results show that this model achieves F1_score of 95.94%on the surface wa-ter system dataset,which is a 4.94%improvement compared to the BERT model without vocabulary enhancement,along with significant accura-cy improvements compared to other models,and can accurately identify geographical named entities.

关键词

地理知识图谱/BERT/命名实体识别/词汇增强

Key words

geographical knowledge graph/BERT/named entity recognition/vocabulary enhancement

分类

天文与地球科学

引用本文复制引用

郑旭野,陈涛,周婧娟..利用扩展词嵌入BERT的地表水系地理命名实体抽取模型[J].地理空间信息,2025,23(2):1-6,6.

基金项目

湖北省自然科学基金资助项目(2022CFB194). (2022CFB194)

地理空间信息

1672-4623

访问量0
|
下载量0
段落导航相关论文