| 注册
首页|期刊导航|地理空间信息|流形学习和卷积神经网络的农作物精细分类

流形学习和卷积神经网络的农作物精细分类

时会省 朱文军 李贺颖

地理空间信息2025,Vol.23Issue(2):11-14,40,5.
地理空间信息2025,Vol.23Issue(2):11-14,40,5.DOI:10.3969/j.issn.1672-4623.2025.02.003

流形学习和卷积神经网络的农作物精细分类

Crops Fine Classification Based on Manifold Learning and Convolutional Neural Network

时会省 1朱文军 2李贺颖3

作者信息

  • 1. 河南测绘职业学院遥感工程系,河南 郑州 450005
  • 2. 河南测绘职业学院空间信息工程系,河南 郑州 450005
  • 3. 河南大学地理与环境学院,河南 开封 475004
  • 折叠

摘要

Abstract

A basic problem in precision agriculture is how to accurately extract different crops from airborne hyperspectral remote sensing imag-es of an agricultural scene.Aiming at the above problem,we proposed a hyperspectral image classification framework for crop fine extraction.Firstly,we introduced a manifold learning method named local covariance matrix,which was often applied to target detection in computer vision,for dimensionality reduction and feature extraction of agricultural hyperspectral images,combining principal component analysis.Then,we designed a lightweight convolution neural network to classify terrain objects.Taking Fanglu tea farm and Longkou farmland as examples,we carried out supervised classification experiments of small samples.Based on convolutional neural network,the front end can effectively extract advanced features of input data and continuously optimize the feature extraction performance,while the back end can effectively mine the nonlinear mapping between advanced features and classification categories and avoid overfitting.The results show that the proposed method achieved the best classification accuracy for all kinds of crops,and the average classification accuracy of crops is increased by 3.63%and 4.75%,respectively,compared with the suboptimal method.

关键词

高光谱遥感/局部协方差矩阵/卷积神经网络/农作物分类/流形学习

Key words

hyperspectral remote sensing/local covariance matrix/convolutional neural network/crop classification/manifold learning

分类

天文与地球科学

引用本文复制引用

时会省,朱文军,李贺颖..流形学习和卷积神经网络的农作物精细分类[J].地理空间信息,2025,23(2):11-14,40,5.

基金项目

河南省重点研发与推广专项(科技攻关)项目(212102310414). (科技攻关)

地理空间信息

1672-4623

访问量0
|
下载量0
段落导航相关论文