| 注册
首页|期刊导航|赣南医科大学学报|深度学习在膝关节MRI图像分割中的研究进展

深度学习在膝关节MRI图像分割中的研究进展

向煜航 孟滔 刘佳奇 张杏林

赣南医科大学学报2025,Vol.45Issue(1):68-73,6.
赣南医科大学学报2025,Vol.45Issue(1):68-73,6.DOI:10.3969/j.issn.1001-5779.2025.01.011

深度学习在膝关节MRI图像分割中的研究进展

Research progress of knee joint MRI image segmentation based on deep learning

向煜航 1孟滔 2刘佳奇 3张杏林4

作者信息

  • 1. 赣南医科大学医学信息工程学院,江西 赣州 341000
  • 2. 江西一脉阳光集团股份有限公司,江西 南昌 330000
  • 3. 上海影禾医脉智能科技有限公司,上海 200336
  • 4. 上海影禾医脉智能科技有限公司,上海 200336||滑铁卢大学大数据研究实验室,滑铁卢 N2L3G1
  • 折叠

摘要

Abstract

With an increase in ageing population,the incidence of chronic joint diseases such as knee osteoarthritis(KOA)has increased year by year.Automatic segmentation of knee joint MRI images can significantly enhance the efficiency of diagnosis and treatment,reducing the burden on physicians.Traditional MRI image segmentation techniques are challenged by cumbersome processes,low precision,and limited generalization capabilities.In recent years,deep learning has shown great potential and advantages in medical image analysis.In knee joint MRI image segmentation,the DSC for bone can reach 0.98,and the DSC for all structures is more than 0.7.This paper reviews the research progress of deep learning in knee joint MRI image segmentation,focusing on the achievements and challenges of deep learning models in five different segmentation tasks.Although considerable progress has been achieved in the field of knee joint segmentation research,some challenges remain to be addressed for its full clinical application,including data diversity,model generalization,real-time performance,and standardization.

关键词

膝关节/深度学习/图像分割/磁共振成像

Key words

Knee joint/Deep learning/Image segmentation/Magnetic resonance imaging

分类

临床医学

引用本文复制引用

向煜航,孟滔,刘佳奇,张杏林..深度学习在膝关节MRI图像分割中的研究进展[J].赣南医科大学学报,2025,45(1):68-73,6.

赣南医科大学学报

1001-5779

访问量3
|
下载量0
段落导航相关论文