| 注册
首页|期刊导航|中北大学学报(自然科学版)|融合Tent映射和模拟退火的改进鸽群优化算法

融合Tent映射和模拟退火的改进鸽群优化算法

张安玲

中北大学学报(自然科学版)2025,Vol.46Issue(1):53-63,75,12.
中北大学学报(自然科学版)2025,Vol.46Issue(1):53-63,75,12.DOI:10.62756/jnuc.issn.1673-3193.2023.11.0026

融合Tent映射和模拟退火的改进鸽群优化算法

Improved Pigeon Swarm Optimization Algorithm Combining Tent Mapping and Simulated Annealing

张安玲1

作者信息

  • 1. 长治学院 数学系,山西 长治 046011
  • 折叠

摘要

Abstract

Aiming at the problems that pigeon swarm optimization algorithm is easy to fall into local optimum,low solution accuracy and the poor local searching ability,improved pigeon swarm optimization algorithm combining Tent mapping and simulated annealing was proposed.Firstly,Tent mapping was used to initialize the population to make the initial population distribution more uniform.Then,the simulated annealing algorithm was added after running the landmark operator of the pigeon swarm optimization algorithm.The simulated annealing algorithm can jump out of the local optimal solution with a certain probability and has the asymptotic convergence to improve the ability of global optimization.The experimental results on the performance of the algorithm based on 16 benchmark functions show that the convergence accuracy of Tent-PIO-SA algorithm is improved by an average of 10 orders of magnitude compared with PIO and Tent-PIO algorithms.Especially for Rosenbrock function,which is extremely difficult to optimize,the convergence accuracy of Tent-PIO-SA algorithm achieves on average 6 orders of magnitude higher than the recent classical algorithms LECUSSA,SCASL,CML-WOA and APN-WOA,and 7 orders of magnitude higher than TLPSO,SCA-DE algorithm.It is proved that the proposed Tent-PIO-SA algorithm has strong optimization ability.

关键词

鸽群优化算法/模拟退火算法/Tent映射

Key words

pigeon swarm optimization algorithm/simulated annealing algorithm/Tent mapping

分类

计算机与自动化

引用本文复制引用

张安玲..融合Tent映射和模拟退火的改进鸽群优化算法[J].中北大学学报(自然科学版),2025,46(1):53-63,75,12.

中北大学学报(自然科学版)

1673-3193

访问量0
|
下载量0
段落导航相关论文