| 注册
首页|期刊导航|计算机工程|基于轻量级高分辨率网络的人体姿态估计算法

基于轻量级高分辨率网络的人体姿态估计算法

刘圣杰 何宁 王鑫 于海港 韩文静

计算机工程2025,Vol.51Issue(2):278-288,11.
计算机工程2025,Vol.51Issue(2):278-288,11.DOI:10.19678/j.issn.1000-3428.0068375

基于轻量级高分辨率网络的人体姿态估计算法

Human Pose-Estimation Algorithm Based on Lightweight High-Resolution Network

刘圣杰 1何宁 1王鑫 2于海港 3韩文静2

作者信息

  • 1. 北京联合大学北京市信息服务工程重点实验室,北京 100101||北京联合大学智慧城市学院,北京 100101
  • 2. 北京联合大学智慧城市学院,北京 100101
  • 3. 北京联合大学北京市信息服务工程重点实验室,北京 100101
  • 折叠

摘要

Abstract

Human pose estimation is widely used in multiple fields,including sports fitness,gesture control,unmanned supermarkets,and entertainment games.However,pose-estimation tasks face several challenges.Considering the current mainstream human pose-estimation networks with large parameters and complex calculations,LitePose,a lightweight pose-estimation network based on a high-resolution network,is proposed.First,Ghost convolution is used to reduce the parameters of the feature extraction network.Second,by using the Decoupled Fully Connected(DFC)attention module,the dependence relationship between pixels in the far distance space position is better captured and the loss in feature extraction due to decrease in parameters is reduced.The accuracy of human pose keypoint regression is improved,and a feature enhancement module is designed to further enhance the features extracted by the backbone network.Finally,a new coordinate decoding method is designed to reduce the error in the heatmap decoding process and improve the accuracy of keypoint regression.LitePose is validated on the human critical point detection datasets COCO and MPII and compared with current mainstream methods.The experimental results show that LitePose loses 0.2%accuracy compared to the baseline network HRNet;however,the number of parameters is less than one-third of the baseline network.LitePose can significantly reduce the number of parameters in the network model while ensuring minimal accuracy loss.

关键词

人体姿态估计/高分辨率网络/轻量化网络/GhostV2/坐标解码

Key words

human pose estimation/high-resolution network/lightweight network/GhostV2/coordinate decoding

分类

信息技术与安全科学

引用本文复制引用

刘圣杰,何宁,王鑫,于海港,韩文静..基于轻量级高分辨率网络的人体姿态估计算法[J].计算机工程,2025,51(2):278-288,11.

基金项目

国家自然科学基金(62272049,62236006) (62272049,62236006)

北京市教委重点项目(KZ201911417048) (KZ201911417048)

科技创新2030重大项目-"新一代人工智能"(2018AAA0100800) (2018AAA0100800)

北京市教委科技项目(KM202111417009,KM201811417005). (KM202111417009,KM201811417005)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文