| 注册
首页|期刊导航|交通信息与安全|基于九轴IMU的船舶运动模式识别方法

基于九轴IMU的船舶运动模式识别方法

陈芊芊 胡凤玲 文元桥

交通信息与安全2024,Vol.42Issue(6):74-83,10.
交通信息与安全2024,Vol.42Issue(6):74-83,10.DOI:10.3963/j.jssn.1674-4861.2024.06.008

基于九轴IMU的船舶运动模式识别方法

A Recognition Method for Ship Motion Pattern Based on Nine-axis IMU

陈芊芊 1胡凤玲 2文元桥3

作者信息

  • 1. 武汉商学院信息工程学院 武汉 430056
  • 2. 武汉理工大学航运学院 武汉 430063
  • 3. 武汉理工大学智能交通系统研究中心 武汉 430063
  • 折叠

摘要

Abstract

Motion pattern recognition is an important issue for achieving intelligent navigation of ships.To address the limitations of existing methods,including slow data update rates and strong environmental constraints,a ship motion pattern recognition method based on nine-axisinertial measurement unit(IMU)is proposed.The shortcom-ings of current ship motion sensing technologies are analyzed,and a nine-axis IMU consisting of an accelerome-ter,gyroscope,and magnetometer is utilized to identify ship motion parameters.To process long-duration continu-ous signals encompassing multiple motion patterns,a data segmentation algorithm based on hidden Markov model is developed.The expectation maximization algorithm is employed to estimate model parameters,enabling signal segmentation according to motion patterns and the extraction of single steady-state motion signals.The time-domain features that characterize ship motion patterns are then extracted from the segmented signals.To improve recogni-tion accuracy,a support vector machine(SVM)algorithm based on a binomial tree structure is designed.The binary tree structure is constructed using the maximum cut problem,with SVM classifiers employed at decision nodes.The particle swarm algorithm is applied to optimize the model parameters.Experiments conducted using ship motion da-ta collected from real ships validate the proposed method.Results show that the proposed recognition algorithm re-quires training only five SVM sub-classifiers for the recognition of six ship motion patterns,achieving an average recognition accuracy of 96.498%.Compared to traditional one-to-one and one-to-rest SVM multi-classification methods,the proposed method improves average recognition accuracy by 13.835%and 21.305%,respective-ly,while requiring fewer sub-classifiers for training.These findings demonstrate the superiority and efficiency of the proposed approach.

关键词

智能交通/船舶运动模式/模式识别/支持向量机/数据分割

Key words

intelligent transportation/ships motion patterns/pattern recognition/support vector machines/data seg-mentation

分类

信息技术与安全科学

引用本文复制引用

陈芊芊,胡凤玲,文元桥..基于九轴IMU的船舶运动模式识别方法[J].交通信息与安全,2024,42(6):74-83,10.

基金项目

国家自然科学基金项目(52001237)资助 (52001237)

交通信息与安全

OA北大核心CSTPCD

1674-4861

访问量0
|
下载量0
段落导航相关论文