| 注册
首页|期刊导航|空气动力学学报|基于不确定性预测的气动力建模与主动采样

基于不确定性预测的气动力建模与主动采样

张子军 李怀璐 赵彤 王旭 张伟伟

空气动力学学报2025,Vol.43Issue(1):12-21,10.
空气动力学学报2025,Vol.43Issue(1):12-21,10.DOI:10.7638/kqdlxxb-2024.0045

基于不确定性预测的气动力建模与主动采样

Aerodynamic modeling and active sampling based on uncertainty prediction

张子军 1李怀璐 2赵彤 1王旭 3张伟伟3

作者信息

  • 1. 沈阳飞机设计研究所,沈阳 110035
  • 2. 沈阳飞机设计研究所,沈阳 110035||西北工业大学航空学院,西安 710072
  • 3. 西北工业大学航空学院,西安 710072
  • 折叠

摘要

Abstract

Neural network methods,as an efficient and accurate modeling approach,have been widely used in various fields.However,the"black-box"feature of neural networks,combined with the engineering problem of few-shot phenomenon,leads to insufficient model reliability and high uncertainty in the prediction results,severely limiting the use of neural network models.In order to enhance the engineering applicability of neural network models,this study focuses on the unsteady aerodynamic characteristic and utilizes time convolutional networks(TCN)to model the temporal unsteady aerodynamic forces in large-amplitude oscillatory wind tunnel tests.The MC-Dropout technique is employed to evaluate the uncertainty of prediction results.Based on the uncertainty analysis results,active sampling of wind tunnel test samples is conducted.The results indicate that model uncertainty can be used as a prior evaluation of the prediction accuracy.There is a strong linear relationship between the model prediction error and the uncertainty.The active sampling strategy can reduce the required samples by up to 40%compared to the random sampling strategy.This validates the effectiveness of the present method in improving the trustworthiness of black-box models and reducing the number of modeling samples required.

关键词

大迎角/风洞试验/非定常气动力/神经网络/不确定性/主动采样

Key words

high angle of attack/wind tunnel test/unsteady aerodynamic/neural network/uncertainty/active sampling

引用本文复制引用

张子军,李怀璐,赵彤,王旭,张伟伟..基于不确定性预测的气动力建模与主动采样[J].空气动力学学报,2025,43(1):12-21,10.

基金项目

国家自然科学基金(U2441211) (U2441211)

空气动力学学报

OA北大核心

0258-1825

访问量2
|
下载量0
段落导航相关论文