| 注册
首页|期刊导航|空气动力学学报|基于稀疏贝叶斯优化的翼型设计可解释性研究

基于稀疏贝叶斯优化的翼型设计可解释性研究

林健 吕宏强 黄增辉 刘子敬 虞建 刘学军

空气动力学学报2025,Vol.43Issue(1):22-33,12.
空气动力学学报2025,Vol.43Issue(1):22-33,12.DOI:10.7638/kqdlxxb-2023.0183

基于稀疏贝叶斯优化的翼型设计可解释性研究

Research on interpretability of airfoil design based on sparse Bayesian optimization

林健 1吕宏强 2黄增辉 3刘子敬 4虞建 1刘学军1

作者信息

  • 1. 南京航空航天大学计算机科学与技术学院,模式分析与机器智能工业和信息化部重点实验室,南京 211106
  • 2. 南京航空航天大学航空学院,南京 210016
  • 3. 中国商飞上海飞机设计研究院,上海 201210
  • 4. 中国航空研究院,北京 100012
  • 折叠

摘要

Abstract

The Bayesian optimization framework has the characteristics of high optimization efficiency and good optimization effect,which is suitable for solving high-dimensional black-box optimization problems,i.e.,in the field of airfoil design.However,due to the opacity of the optimization process,it is difficult to intuitively understand the relationship between the machine optimization results and typical physical characteristics of the airfoil.Therefore,how to interpret the Bayesian optimization process is still a challenge.To solve this problem,an airfoil optimization interpretability method based on the sparse Bayesian optimization framework is proposed,which utilizes typical geometric features of physical significance in the optimization process.During the process of Bayesian optimization,the airfoil features are sparse,and interpretability information is obtained.The proposed method is verified using the example of supercritical airfoil optimization with RAE2822 as the reference airfoil.The experimental results show that the proposed method reduces the airfoil design dimension as much as possible,and makes the data explainable to a certain extent while ensuring good aerodynamic performance,which can help intuitively understand the influence degree of airfoil parameters on the optimization objective and assist designers to make decision and judgment during the airfoil design.

关键词

贝叶斯优化/可解释性/翼型物理特征/翼型设计/维度稀疏

Key words

Bayesian optimization/interpretability/physical characteristics of airfoil/airfoil design/dimensional sparsity

分类

计算机与自动化

引用本文复制引用

林健,吕宏强,黄增辉,刘子敬,虞建,刘学军..基于稀疏贝叶斯优化的翼型设计可解释性研究[J].空气动力学学报,2025,43(1):22-33,12.

基金项目

航空科学基金(2018ZA52002,2019ZA052011) (2018ZA52002,2019ZA052011)

空气动力学学报

OA北大核心

0258-1825

访问量3
|
下载量0
段落导航相关论文