| 注册
首页|期刊导航|空气动力学学报|基于低阶导数物理信息神经网络的流动和传热反演问题研究

基于低阶导数物理信息神经网络的流动和传热反演问题研究

张贤 胡春 崔永赫 王秋旺 赵存陆

空气动力学学报2025,Vol.43Issue(1):34-43,10.
空气动力学学报2025,Vol.43Issue(1):34-43,10.DOI:10.7638/kqdlxxb-2024.0015

基于低阶导数物理信息神经网络的流动和传热反演问题研究

Study on inverse problems of flow and heat transfer using low-order derivative physics-informed neural network

张贤 1胡春 2崔永赫 2王秋旺 2赵存陆2

作者信息

  • 1. 国核电力规划设计研究院有限公司,北京 100095
  • 2. 西安交通大学热流科学与工程教育部重点实验室,西安 710049
  • 折叠

摘要

Abstract

Solving inverse problems of flow and heat transfer in aerodynamics is crucial for aircraft design and flight environment control.However,traditional numerical methods often encounter challenges related to computational complexity and data dependency when addressing such problems.To tackle these issues,based on the physics-informed neural network(PINN)framework,we present a low-order derivative physics-informed neural network(LPINN),which can effectively solve inverse problems in flow and heat transfer using only a limited amount of experimental measurement data.Two typical two-dimensional cases,namely Poiseuille flow and lid-driven cavity flow,are selected to comprehensively evaluate the effectiveness and reliability of LPINN in solving inverse problems.Results indicate that,without explicit boundary conditions,LPINN can accurately predict the flow and temperature fields within the entire computational domain using sparse observation data and can also precisely determine the unknown Reynolds and Péclet numbers in the governing equations.Comparisons of three observation point selection schemes—random,uniform,and prior-knowledge-based—reveal that the prior-knowledge-based scheme requires the fewest observation points to achieve high inversion accuracy,thereby enhancing the efficiency of solving inverse problems.Additionally,LPINN exhibits strong robustness against noise in experimental data.

关键词

低阶导数/物理信息神经网络/流动与传热/反演问题

Key words

low-order derivative/physics-informed neural network/flow and heat transfer/inverse problem

分类

能源与动力

引用本文复制引用

张贤,胡春,崔永赫,王秋旺,赵存陆..基于低阶导数物理信息神经网络的流动和传热反演问题研究[J].空气动力学学报,2025,43(1):34-43,10.

基金项目

国家自然科学基金(51976157,51721004) (51976157,51721004)

空气动力学学报

OA北大核心

0258-1825

访问量0
|
下载量0
段落导航相关论文