| 注册
首页|期刊导航|南方电网技术|基于改进MFCC-OCSVM和贝叶斯优化BiGRU的GIS异常工况声纹识别算法

基于改进MFCC-OCSVM和贝叶斯优化BiGRU的GIS异常工况声纹识别算法

庄小亮 李乾坤 刘紫罡 张禄亮 季天瑶 张长虹

南方电网技术2025,Vol.19Issue(1):30-40,11.
南方电网技术2025,Vol.19Issue(1):30-40,11.DOI:10.13648/j.cnki.issn1674-0629.2025.01.004

基于改进MFCC-OCSVM和贝叶斯优化BiGRU的GIS异常工况声纹识别算法

Voiceprint Recognition Algorithm for GIS Anomalous Conditions Based on Improved MFCC-OCSVM and Bayesian Optimized BiGRU

庄小亮 1李乾坤 1刘紫罡 2张禄亮 2季天瑶 2张长虹3

作者信息

  • 1. 南方电网超高压输电公司,广州 510663
  • 2. 华南理工大学电力学院,广州 510640
  • 3. 南方电网超高压输电公司电力科研院,广州 510663
  • 折叠

摘要

Abstract

To accurately identify abnormal conditions in gas insulated switchgear(GIS)equipment,a voiceprint recognition algorithm is proposed based on weighted Mel frequency cestrum coefficient-one class support vector machine(MFCC-OCSVM)and Bayesian optimized bidirectional gate recurrent unit(BiGRU).Firstly,weighted extractions of voiceprint data are performed using MFCC based on the F-statistic,highlighting important features and reducing the influence of noise.Subsequently,OCSVM is utilized to detect anomalies and remove anomalous values from the weighted features to improve data quality.To address the issue of sample imbalance,synthetic minority over-sampling technique(SMOTE)is employed to balance voiceprint samples.Finally,voiceprint recognition is carried out using a BiGRU model based on Bayesian optimization.Taking a certain GIS equipment as an example,sound samples from 20 different operating conditions are collected and compared with various classical classification models.The results demonstrate that the proposed algorithm achieves the highest average recognition accuracy of 92.8%,resulting in improve-ments of 30.1%,14.7%and 11.5%compared to adaptive boosting,Naïve Bayes,and linear discriminate analysis,respectively.Ablation study further assesses and validates the practical effects and performance impacts of each process in the proposed algorithm.Research results provide an efficient technical approach for voiceprint recognition of anomalous conditions in GIS.

关键词

GIS设备/梅尔频谱倒谱系数/单类支持向量机/双向门控循环单元/声纹识别/贝叶斯优化

Key words

gas insulated switchgear(GIS)equipment/Mel frequency cestrum coefficient(MFCC)/one-class support vector machine(OCSVM)/bidirectional gate recurrent unit(BiGRU)/voiceprint recognition/Bayesian optimization

分类

信息技术与安全科学

引用本文复制引用

庄小亮,李乾坤,刘紫罡,张禄亮,季天瑶,张长虹..基于改进MFCC-OCSVM和贝叶斯优化BiGRU的GIS异常工况声纹识别算法[J].南方电网技术,2025,19(1):30-40,11.

基金项目

国家自然科学基金资助项目(52077081) (52077081)

中国南方电网有限责任公司科技项目(CGYKJXM20220069).Supported by the National Science Foundation of China(52077081) (CGYKJXM20220069)

the Science and Technology Project of China Southern Power Grid Co.,Ltd.(CGYKJXM20220069). (CGYKJXM20220069)

南方电网技术

OA北大核心

1674-0629

访问量0
|
下载量0
段落导航相关论文